# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import copy import json import os os.environ["TOKENIZERS_PARALLELISM"] = "false" # Workaround to suppress MP warning import sys from io import BytesIO import torch from cosmos_transfer1.checkpoints import ( BASE_7B_CHECKPOINT_AV_SAMPLE_PATH, BASE_7B_CHECKPOINT_PATH, EDGE2WORLD_CONTROLNET_DISTILLED_CHECKPOINT_PATH, ) from cosmos_transfer1.diffusion.inference.inference_utils import load_controlnet_specs, validate_controlnet_specs from cosmos_transfer1.diffusion.inference.preprocessors import Preprocessors from cosmos_transfer1.diffusion.inference.world_generation_pipeline import ( DiffusionControl2WorldGenerationPipeline, DistilledControl2WorldGenerationPipeline, ) from cosmos_transfer1.utils import log, misc from cosmos_transfer1.utils.io import read_prompts_from_file, save_video torch.enable_grad(False) torch.serialization.add_safe_globals([BytesIO]) def parse_arguments() -> argparse.Namespace: parser = argparse.ArgumentParser(description="Control to world generation demo script", conflict_handler="resolve") # Add transfer specific arguments parser.add_argument( "--prompt", type=str, default="The video captures a stunning, photorealistic scene with remarkable attention to detail, giving it a lifelike appearance that is almost indistinguishable from reality. It appears to be from a high-budget 4K movie, showcasing ultra-high-definition quality with impeccable resolution.", help="prompt which the sampled video condition on", ) parser.add_argument( "--negative_prompt", type=str, default="The video captures a game playing, with bad crappy graphics and cartoonish frames. It represents a recording of old outdated games. The lighting looks very fake. The textures are very raw and basic. The geometries are very primitive. The images are very pixelated and of poor CG quality. There are many subtitles in the footage. Overall, the video is unrealistic at all.", help="negative prompt which the sampled video condition on", ) parser.add_argument( "--input_video_path", type=str, default="", help="Optional input RGB video path", ) parser.add_argument( "--num_input_frames", type=int, default=1, help="Number of conditional frames for long video generation", choices=[1], ) parser.add_argument("--sigma_max", type=float, default=70.0, help="sigma_max for partial denoising") parser.add_argument( "--blur_strength", type=str, default="medium", choices=["very_low", "low", "medium", "high", "very_high"], help="blur strength.", ) parser.add_argument( "--canny_threshold", type=str, default="medium", choices=["very_low", "low", "medium", "high", "very_high"], help="blur strength of canny threshold applied to input. Lower means less blur or more detected edges, which means higher fidelity to input.", ) parser.add_argument( "--controlnet_specs", type=str, help="Path to JSON file specifying multicontrolnet configurations", required=True, ) parser.add_argument( "--is_av_sample", action="store_true", help="Whether the model is an driving post-training model" ) parser.add_argument( "--checkpoint_dir", type=str, default="checkpoints", help="Base directory containing model checkpoints" ) parser.add_argument( "--tokenizer_dir", type=str, default="Cosmos-Tokenize1-CV8x8x8-720p", help="Tokenizer weights directory relative to checkpoint_dir", ) parser.add_argument( "--video_save_name", type=str, default="output", help="Output filename for generating a single video", ) parser.add_argument( "--video_save_folder", type=str, default="outputs/", help="Output folder for generating a batch of videos", ) parser.add_argument( "--batch_input_path", type=str, help="Path to a JSONL file of input prompts for generating a batch of videos", ) parser.add_argument("--batch_size", type=int, default=1, help="Batch size") parser.add_argument("--num_steps", type=int, default=35, help="Number of diffusion sampling steps") parser.add_argument("--guidance", type=float, default=5, help="Classifier-free guidance scale value") parser.add_argument("--fps", type=int, default=24, help="FPS of the output video") parser.add_argument("--seed", type=int, default=1, help="Random seed") parser.add_argument("--num_gpus", type=int, default=1, help="Number of GPUs used to run inference in parallel.") parser.add_argument( "--offload_diffusion_transformer", action="store_true", help="Offload DiT after inference", ) parser.add_argument( "--offload_text_encoder_model", action="store_true", help="Offload text encoder model after inference", ) parser.add_argument( "--offload_guardrail_models", action="store_true", help="Offload guardrail models after inference", ) parser.add_argument( "--upsample_prompt", action="store_true", help="Upsample prompt using Pixtral upsampler model", ) parser.add_argument( "--offload_prompt_upsampler", action="store_true", help="Offload prompt upsampler model after inference", ) parser.add_argument("--use_distilled", action="store_true", help="Use distilled ControlNet model variant") cmd_args = parser.parse_args() # Load and parse JSON input control_inputs, json_args = load_controlnet_specs(cmd_args) log.info(f"control_inputs: {json.dumps(control_inputs, indent=4)}") log.info(f"args in json: {json.dumps(json_args, indent=4)}") # if parameters not set on command line, use the ones from the controlnet_specs # if both not set use command line defaults for key in json_args: if f"--{key}" not in sys.argv: setattr(cmd_args, key, json_args[key]) log.info(f"final args: {json.dumps(vars(cmd_args), indent=4)}") return cmd_args, control_inputs def demo(cfg, control_inputs): """Run control-to-world generation demo. This function handles the main control-to-world generation pipeline, including: - Setting up the random seed for reproducibility - Initializing the generation pipeline with the provided configuration - Processing single or multiple prompts/images/videos from input - Generating videos from prompts and images/videos - Saving the generated videos and corresponding prompts to disk Args: cfg (argparse.Namespace): Configuration namespace containing: - Model configuration (checkpoint paths, model settings) - Generation parameters (guidance, steps, dimensions) - Input/output settings (prompts/images/videos, save paths) - Performance options (model offloading settings) The function will save: - Generated MP4 video files - Text files containing the processed prompts If guardrails block the generation, a critical log message is displayed and the function continues to the next prompt if available. """ control_inputs = validate_controlnet_specs(cfg, control_inputs) misc.set_random_seed(cfg.seed) device_rank = 0 process_group = None if cfg.num_gpus > 1: from megatron.core import parallel_state from cosmos_transfer1.utils import distributed distributed.init() parallel_state.initialize_model_parallel(context_parallel_size=cfg.num_gpus) process_group = parallel_state.get_context_parallel_group() device_rank = distributed.get_rank(process_group) preprocessors = Preprocessors() if cfg.use_distilled: assert not cfg.is_av_sample checkpoint = EDGE2WORLD_CONTROLNET_DISTILLED_CHECKPOINT_PATH pipeline = DistilledControl2WorldGenerationPipeline( checkpoint_dir=cfg.checkpoint_dir, checkpoint_name=checkpoint, offload_network=cfg.offload_diffusion_transformer, offload_text_encoder_model=cfg.offload_text_encoder_model, offload_guardrail_models=cfg.offload_guardrail_models, guidance=cfg.guidance, num_steps=cfg.num_steps, fps=cfg.fps, seed=cfg.seed, num_input_frames=cfg.num_input_frames, control_inputs=control_inputs, sigma_max=cfg.sigma_max, blur_strength=cfg.blur_strength, canny_threshold=cfg.canny_threshold, upsample_prompt=cfg.upsample_prompt, offload_prompt_upsampler=cfg.offload_prompt_upsampler, process_group=process_group, ) else: checkpoint = BASE_7B_CHECKPOINT_AV_SAMPLE_PATH if cfg.is_av_sample else BASE_7B_CHECKPOINT_PATH # Initialize transfer generation model pipeline pipeline = DiffusionControl2WorldGenerationPipeline( checkpoint_dir=cfg.checkpoint_dir, checkpoint_name=checkpoint, offload_network=cfg.offload_diffusion_transformer, offload_text_encoder_model=cfg.offload_text_encoder_model, offload_guardrail_models=cfg.offload_guardrail_models, guidance=cfg.guidance, num_steps=cfg.num_steps, fps=cfg.fps, seed=cfg.seed, num_input_frames=cfg.num_input_frames, control_inputs=control_inputs, sigma_max=cfg.sigma_max, blur_strength=cfg.blur_strength, canny_threshold=cfg.canny_threshold, upsample_prompt=cfg.upsample_prompt, offload_prompt_upsampler=cfg.offload_prompt_upsampler, process_group=process_group, ) if cfg.batch_input_path: log.info(f"Reading batch inputs from path: {cfg.batch_input_path}") prompts = read_prompts_from_file(cfg.batch_input_path) else: # Single prompt case prompts = [{"prompt": cfg.prompt, "visual_input": cfg.input_video_path}] batch_size = cfg.batch_size if hasattr(cfg, "batch_size") else 1 if any("upscale" in control_input for control_input in control_inputs) and batch_size > 1: batch_size = 1 log.info("Setting batch_size=1 as upscale does not support batch generation") os.makedirs(cfg.video_save_folder, exist_ok=True) for batch_start in range(0, len(prompts), batch_size): # Get current batch batch_prompts = prompts[batch_start : batch_start + batch_size] actual_batch_size = len(batch_prompts) # Extract batch data batch_prompt_texts = [p.get("prompt", None) for p in batch_prompts] batch_video_paths = [p.get("visual_input", None) for p in batch_prompts] batch_control_inputs = [] for i, input_dict in enumerate(batch_prompts): current_prompt = input_dict.get("prompt", None) current_video_path = input_dict.get("visual_input", None) if cfg.batch_input_path: video_save_subfolder = os.path.join(cfg.video_save_folder, f"video_{batch_start+i}") os.makedirs(video_save_subfolder, exist_ok=True) else: video_save_subfolder = cfg.video_save_folder current_control_inputs = copy.deepcopy(control_inputs) if "control_overrides" in input_dict: for hint_key, override in input_dict["control_overrides"].items(): if hint_key in current_control_inputs: current_control_inputs[hint_key].update(override) else: log.warning(f"Ignoring unknown control key in override: {hint_key}") # if control inputs are not provided, run respective preprocessor (for seg and depth) log.info("running preprocessor") preprocessors( current_video_path, current_prompt, current_control_inputs, video_save_subfolder, cfg.regional_prompts if hasattr(cfg, "regional_prompts") else None, ) batch_control_inputs.append(current_control_inputs) regional_prompts = [] region_definitions = [] if hasattr(cfg, "regional_prompts") and cfg.regional_prompts: log.info(f"regional_prompts: {cfg.regional_prompts}") for regional_prompt in cfg.regional_prompts: regional_prompts.append(regional_prompt["prompt"]) if "region_definitions_path" in regional_prompt: log.info(f"region_definitions_path: {regional_prompt['region_definitions_path']}") region_definition_path = regional_prompt["region_definitions_path"] if isinstance(region_definition_path, str) and region_definition_path.endswith(".json"): with open(region_definition_path, "r") as f: region_definitions_json = json.load(f) region_definitions.extend(region_definitions_json) else: region_definitions.append(region_definition_path) if hasattr(pipeline, "regional_prompts"): pipeline.regional_prompts = regional_prompts if hasattr(pipeline, "region_definitions"): pipeline.region_definitions = region_definitions # Generate videos in batch batch_outputs = pipeline.generate( prompt=batch_prompt_texts, video_path=batch_video_paths, negative_prompt=cfg.negative_prompt, control_inputs=batch_control_inputs, save_folder=video_save_subfolder, batch_size=actual_batch_size, ) if batch_outputs is None: log.critical("Guardrail blocked generation for entire batch.") continue videos, final_prompts = batch_outputs for i, (video, prompt) in enumerate(zip(videos, final_prompts)): if cfg.batch_input_path: video_save_subfolder = os.path.join(cfg.video_save_folder, f"video_{batch_start+i}") video_save_path = os.path.join(video_save_subfolder, "output.mp4") prompt_save_path = os.path.join(video_save_subfolder, "prompt.txt") else: video_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.mp4") prompt_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.txt") # Save video and prompt if device_rank == 0: os.makedirs(os.path.dirname(video_save_path), exist_ok=True) save_video( video=video, fps=cfg.fps, H=video.shape[1], W=video.shape[2], video_save_quality=5, video_save_path=video_save_path, ) # Save prompt to text file alongside video with open(prompt_save_path, "wb") as f: f.write(prompt.encode("utf-8")) log.info(f"Saved video to {video_save_path}") log.info(f"Saved prompt to {prompt_save_path}") # clean up properly if cfg.num_gpus > 1: parallel_state.destroy_model_parallel() import torch.distributed as dist dist.destroy_process_group() if __name__ == "__main__": args, control_inputs = parse_arguments() demo(args, control_inputs)