# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import base64 import collections import collections.abc import functools import json import os import random import tempfile import time from contextlib import ContextDecorator from typing import Any, Callable, List, Tuple, TypeVar import cv2 import numpy as np import termcolor import torch from torch.distributed._functional_collectives import AsyncCollectiveTensor from torch.distributed._tensor.api import DTensor from cosmos_transfer1.utils import distributed, log def extract_video_frames(video_path, number_of_frames=2): cap = cv2.VideoCapture(video_path) frame_paths = [] temp_dir = tempfile.gettempdir() for i in range(number_of_frames): # Extract first two frames ret, frame = cap.read() if not ret: break # Stop if no more frames temp_path = os.path.join(temp_dir, f"frame_{i+1}.png") cv2.imwrite(temp_path, frame) frame_paths.append(temp_path) cap.release() return frame_paths def image_to_base64(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") def to( data: Any, device: str | torch.device | None = None, dtype: torch.dtype | None = None, memory_format: torch.memory_format = torch.preserve_format, ) -> Any: """Recursively cast data into the specified device, dtype, and/or memory_format. The input data can be a tensor, a list of tensors, a dict of tensors. See the documentation for torch.Tensor.to() for details. Args: data (Any): Input data. device (str | torch.device): GPU device (default: None). dtype (torch.dtype): data type (default: None). memory_format (torch.memory_format): memory organization format (default: torch.preserve_format). Returns: data (Any): Data cast to the specified device, dtype, and/or memory_format. """ assert ( device is not None or dtype is not None or memory_format is not None ), "at least one of device, dtype, memory_format should be specified" if isinstance(data, torch.Tensor): is_cpu = (isinstance(device, str) and device == "cpu") or ( isinstance(device, torch.device) and device.type == "cpu" ) data = data.to( device=device, dtype=dtype, memory_format=memory_format, non_blocking=(not is_cpu), ) return data elif isinstance(data, collections.abc.Mapping): return type(data)({key: to(data[key], device=device, dtype=dtype, memory_format=memory_format) for key in data}) elif isinstance(data, collections.abc.Sequence) and not isinstance(data, (str, bytes)): return type(data)([to(elem, device=device, dtype=dtype, memory_format=memory_format) for elem in data]) else: return data def get_local_tensor_if_DTensor(tensor: torch.Tensor | DTensor) -> torch.tensor: if isinstance(tensor, DTensor): local = tensor.to_local() # As per PyTorch documentation, if the communication is not finished yet, we need to wait for it to finish # https://pytorch.org/docs/stable/distributed.tensor.html#torch.distributed.tensor.DTensor.to_local if isinstance(local, AsyncCollectiveTensor): return local.wait() else: return local return tensor def serialize(data: Any) -> Any: """Serialize data by hierarchically traversing through iterables. Args: data (Any): Input data. Returns: data (Any): Serialized data. """ if isinstance(data, collections.abc.Mapping): return type(data)({key: serialize(data[key]) for key in data}) elif isinstance(data, collections.abc.Sequence) and not isinstance(data, (str, bytes)): return type(data)([serialize(elem) for elem in data]) else: try: json.dumps(data) except TypeError: data = str(data) return data def print_environ_variables(env_vars: list[str]) -> None: """Print a specific list of environment variables. Args: env_vars (list[str]): List of specified environment variables. """ for env_var in env_vars: if env_var in os.environ: log.info(f"Environment variable {Color.green(env_var)}: {Color.yellow(os.environ[env_var])}") else: log.warning(f"Environment variable {Color.green(env_var)} not set!") def set_random_seed(seed: int, by_rank: bool = False) -> None: """Set random seed. This includes random, numpy, Pytorch. Args: seed (int): Random seed. by_rank (bool): if true, each GPU will use a different random seed. """ if by_rank: seed += distributed.get_rank() log.info(f"Using random seed {seed}.") random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # sets seed on the current CPU & all GPUs def arch_invariant_rand( shape: List[int] | Tuple[int], dtype: torch.dtype, device: str | torch.device, seed: int | None = None ): """Produce a GPU-architecture-invariant randomized Torch tensor. Args: shape (list or tuple of ints): Output tensor shape. dtype (torch.dtype): Output tensor type. device (torch.device): Device holding the output. seed (int): Optional randomization seed. Returns: tensor (torch.tensor): Randomly-generated tensor. """ # Create a random number generator, optionally seeded rng = np.random.RandomState(seed) # # Generate random numbers using the generator random_array = rng.standard_normal(shape).astype(np.float32) # Use standard_normal for normal distribution # Convert to torch tensor and return return torch.from_numpy(random_array).to(dtype=dtype, device=device) T = TypeVar("T", bound=Callable[..., Any]) class timer(ContextDecorator): # noqa: N801 """Simple timer for timing the execution of code. It can be used as either a context manager or a function decorator. The timing result will be logged upon exit. Example: def func_a(): time.sleep(1) with timer("func_a"): func_a() @timer("func_b) def func_b(): time.sleep(1) func_b() """ def __init__(self, context: str, debug: bool = False): self.context = context self.debug = debug def __enter__(self) -> None: self.tic = time.time() def __exit__(self, exc_type, exc_value, traceback) -> None: # noqa: ANN001 time_spent = time.time() - self.tic if self.debug: log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds") else: log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds") def __call__(self, func: T) -> T: @functools.wraps(func) def wrapper(*args, **kwargs): # noqa: ANN202 tic = time.time() result = func(*args, **kwargs) time_spent = time.time() - tic if self.debug: log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds") else: log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds") return result return wrapper # type: ignore class TrainingTimer: """Timer for timing the execution of code, aggregating over multiple training iterations. It is used as a context manager to measure the execution time of code and store the timing results for each function. The context managers can be nested. Attributes: results (dict): A dictionary to store timing results for various code. Example: timer = Timer() for i in range(100): with timer("func_a"): func_a() avg_time = sum(timer.results["func_a"]) / len(timer.results["func_a"]) print(f"func_a() took {avg_time} seconds.") """ def __init__(self) -> None: self.results = dict() self.average_results = dict() self.start_time = [] self.func_stack = [] self.reset() def reset(self) -> None: self.results = {key: [] for key in self.results} def __enter__(self) -> TrainingTimer: self.start_time.append(time.time()) return self def __exit__(self, exc_type, exc_value, traceback) -> None: # noqa: ANN001 end_time = time.time() result = end_time - self.start_time.pop() key = self.func_stack.pop() self.results.setdefault(key, []) self.results[key].append(result) def __call__(self, func_name: str) -> TrainingTimer: self.func_stack.append(func_name) return self def __getattr__(self, func_name: str) -> TrainingTimer: return self.__call__(func_name) def nested(self, func_name: str) -> TrainingTimer: return self.__call__(func_name) def compute_average_results(self) -> dict[str, float]: results = dict() for key, value_list in self.results.items(): results[key] = sum(value_list) / len(value_list) return results def timeout_handler(timeout_period: float, signum: int, frame: int) -> None: # What to do when the process gets stuck. For now, we simply end the process. error_message = f"Timeout error: more than {timeout_period} seconds passed since the last iteration." raise TimeoutError(error_message) class Color: """A convenience class to colorize strings in the console. Example: import print("This is {Color.red('important')}.") """ @staticmethod def red(x: str) -> str: return termcolor.colored(str(x), color="red") @staticmethod def green(x: str) -> str: return termcolor.colored(str(x), color="green") @staticmethod def cyan(x: str) -> str: return termcolor.colored(str(x), color="cyan") @staticmethod def yellow(x: str) -> str: return termcolor.colored(str(x), color="yellow")