Spaces:
Build error
Build error
File size: 6,723 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file bounding_box.cuh
* @author Thomas Müller & Alex Evans, NVIDIA
* @brief CUDA/C++ AABB implementation.
*/
#pragma once
#include <neural-graphics-primitives/common.h>
#include <neural-graphics-primitives/common_device.cuh>
#include <neural-graphics-primitives/triangle.cuh>
namespace ngp {
template <int N_POINTS>
NGP_HOST_DEVICE inline void project(vec3 points[N_POINTS], const vec3& axis, float& min, float& max) {
min = std::numeric_limits<float>::infinity();
max = -std::numeric_limits<float>::infinity();
NGP_PRAGMA_UNROLL
for (uint32_t i = 0; i < N_POINTS; ++i) {
float val = dot(axis, points[i]);
if (val < min) {
min = val;
}
if (val > max) {
max = val;
}
}
}
struct BoundingBox {
NGP_HOST_DEVICE BoundingBox() {}
NGP_HOST_DEVICE BoundingBox(const vec3& a, const vec3& b) : min{a}, max{b} {}
NGP_HOST_DEVICE explicit BoundingBox(const Triangle& tri) {
min = max = tri.a;
enlarge(tri.b);
enlarge(tri.c);
}
NGP_HOST_DEVICE BoundingBox(Triangle* begin, Triangle* end) {
min = max = begin->a;
for (auto it = begin; it != end; ++it) {
enlarge(*it);
}
}
NGP_HOST_DEVICE void enlarge(const BoundingBox& other) {
min = tcnn::min(min, other.min);
max = tcnn::max(max, other.max);
}
NGP_HOST_DEVICE void enlarge(const Triangle& tri) {
enlarge(tri.a);
enlarge(tri.b);
enlarge(tri.c);
}
NGP_HOST_DEVICE void enlarge(const vec3& point) {
min = tcnn::min(min, point);
max = tcnn::max(max, point);
}
NGP_HOST_DEVICE void inflate(float amount) {
min -= vec3(amount);
max += vec3(amount);
}
NGP_HOST_DEVICE vec3 diag() const {
return max - min;
}
NGP_HOST_DEVICE vec3 relative_pos(const vec3& pos) const {
return (pos - min) / diag();
}
NGP_HOST_DEVICE vec3 center() const {
return 0.5f * (max + min);
}
NGP_HOST_DEVICE BoundingBox intersection(const BoundingBox& other) const {
BoundingBox result = *this;
result.min = tcnn::max(result.min, other.min);
result.max = tcnn::min(result.max, other.max);
return result;
}
NGP_HOST_DEVICE bool intersects(const BoundingBox& other) const {
return !intersection(other).is_empty();
}
// Based on the separating axis theorem
// (https://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/tribox_tam.pdf)
// Code adapted from a C# implementation at stack overflow
// https://stackoverflow.com/a/17503268
NGP_HOST_DEVICE bool intersects(const Triangle& triangle) const {
float triangle_min, triangle_max;
float box_min, box_max;
// Test the box normals (x-, y- and z-axes)
vec3 box_normals[3] = {
vec3{1.0f, 0.0f, 0.0f},
vec3{0.0f, 1.0f, 0.0f},
vec3{0.0f, 0.0f, 1.0f},
};
vec3 triangle_normal = triangle.normal();
vec3 triangle_verts[3];
triangle.get_vertices(triangle_verts);
for (int i = 0; i < 3; i++) {
project<3>(triangle_verts, box_normals[i], triangle_min, triangle_max);
if (triangle_max < min[i] || triangle_min > max[i]) {
return false; // No intersection possible.
}
}
vec3 verts[8];
get_vertices(verts);
// Test the triangle normal
float triangle_offset = dot(triangle_normal, triangle.a);
project<8>(verts, triangle_normal, box_min, box_max);
if (box_max < triangle_offset || box_min > triangle_offset) {
return false; // No intersection possible.
}
// Test the nine edge cross-products
vec3 edges[3] = {
triangle.a - triangle.b,
triangle.a - triangle.c,
triangle.b - triangle.c,
};
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
// The box normals are the same as it's edge tangents
vec3 axis = cross(edges[i], box_normals[j]);
project<8>(verts, axis, box_min, box_max);
project<3>(triangle_verts, axis, triangle_min, triangle_max);
if (box_max < triangle_min || box_min > triangle_max)
return false; // No intersection possible
}
}
// No separating axis found.
return true;
}
NGP_HOST_DEVICE vec2 ray_intersect(const vec3& pos, const vec3& dir) const {
float tmin = (min.x - pos.x) / dir.x;
float tmax = (max.x - pos.x) / dir.x;
if (tmin > tmax) {
host_device_swap(tmin, tmax);
}
float tymin = (min.y - pos.y) / dir.y;
float tymax = (max.y - pos.y) / dir.y;
if (tymin > tymax) {
host_device_swap(tymin, tymax);
}
if (tmin > tymax || tymin > tmax) {
return { std::numeric_limits<float>::max(), std::numeric_limits<float>::max() };
}
if (tymin > tmin) {
tmin = tymin;
}
if (tymax < tmax) {
tmax = tymax;
}
float tzmin = (min.z - pos.z) / dir.z;
float tzmax = (max.z - pos.z) / dir.z;
if (tzmin > tzmax) {
host_device_swap(tzmin, tzmax);
}
if (tmin > tzmax || tzmin > tmax) {
return { std::numeric_limits<float>::max(), std::numeric_limits<float>::max() };
}
if (tzmin > tmin) {
tmin = tzmin;
}
if (tzmax < tmax) {
tmax = tzmax;
}
return { tmin, tmax };
}
NGP_HOST_DEVICE bool is_empty() const {
return max.x < min.x || max.y < min.y || max.z < min.z;
}
NGP_HOST_DEVICE bool contains(const vec3& p) const {
return
p.x >= min.x && p.x <= max.x &&
p.y >= min.y && p.y <= max.y &&
p.z >= min.z && p.z <= max.z;
}
/// Calculate the squared point-AABB distance
NGP_HOST_DEVICE float distance(const vec3& p) const {
return sqrt(distance_sq(p));
}
NGP_HOST_DEVICE float distance_sq(const vec3& p) const {
return length2(tcnn::max(tcnn::max(min - p, p - max), vec3(0.0f)));
}
NGP_HOST_DEVICE float signed_distance(const vec3& p) const {
vec3 q = abs(p - min) - diag();
return length(tcnn::max(q, vec3(0.0f))) + std::min(tcnn::max(q), 0.0f);
}
NGP_HOST_DEVICE void get_vertices(vec3 v[8]) const {
v[0] = {min.x, min.y, min.z};
v[1] = {min.x, min.y, max.z};
v[2] = {min.x, max.y, min.z};
v[3] = {min.x, max.y, max.z};
v[4] = {max.x, min.y, min.z};
v[5] = {max.x, min.y, max.z};
v[6] = {max.x, max.y, min.z};
v[7] = {max.x, max.y, max.z};
}
vec3 min = vec3(std::numeric_limits<float>::infinity());
vec3 max = vec3(-std::numeric_limits<float>::infinity());
};
}
|