File size: 7,833 Bytes
28451f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from hydra.core.config_store import ConfigStore

from cosmos_predict1.tokenizer.training.configs.experiments.utils import create_debug_job_with_mock_data
from cosmos_predict1.utils import log
from cosmos_predict1.utils.lazy_config import LazyDict

# Post-training config for Cosmos-Tokenize1-CV8x8x8-720p-HDVILA
Cosmos_Tokenize1_CV8x8x8_720p_HDVILA: LazyDict = LazyDict(
    dict(
        defaults=[
            "/experiment/video_basic",
            {"override /network": "continuous_factorized_video"},
            {"override /data_train": "hdvila_video720"},
            {"override /data_val": "hdvila_video720"},
            "_self_",
        ],
        dataloader_train=dict(
            dataset=dict(
                crop_height=256,
                num_video_frames=121,
            ),
            batch_size=1,
        ),
        dataloader_val=dict(
            dataset=dict(
                crop_height=256,
                num_video_frames=121,
            ),
            batch_size=1,
        ),
        model=dict(
            config=dict(
                network=dict(
                    channels_mult=[2, 4, 4],
                    patch_size=4,
                    legacy_mode=False,
                    temporal_compression=8,
                    spatial_compression=8,
                )
            )
        ),
        job=dict(
            project="posttraining",
            group="tokenizer",
            name="Cosmos-Tokenize1-CV8x8x8-720p-HDVILA",
        ),
        checkpoint=dict(
            load_path="checkpoints/Cosmos-Tokenize1-CV8x8x8-720p/model.pt",
            strict_resume=True,
            load_training_state=True,
            jit=dict(input_shape=[1, 3, 17, 512, 512]),
        ),
    )
)

# Post-training config for Cosmos-Tokenize1-DV8x16x16-720p-HDVILA
Cosmos_Tokenize1_DV8x16x16_720p_HDVILA: LazyDict = LazyDict(
    dict(
        defaults=[
            "/experiment/video_basic",
            {"override /network": "discrete_factorized_video"},
            {"override /data_train": "hdvila_video720"},
            {"override /data_val": "hdvila_video720"},
            "_self_",
        ],
        dataloader_train=dict(
            dataset=dict(
                crop_height=256,
                num_video_frames=49,
            ),
            batch_size=1,
        ),
        dataloader_val=dict(
            dataset=dict(
                crop_height=256,
                num_video_frames=49,
            ),
            batch_size=1,
        ),
        model=dict(
            config=dict(
                network=dict(
                    persistent_quantizer=False,
                    z_channels=16,
                    channels_mult=[2, 4, 4],
                    patch_size=4,
                    legacy_mode=False,
                    temporal_compression=8,
                    spatial_compression=16,
                )
            )
        ),
        job=dict(
            project="posttraining",
            group="tokenizer",
            name="Cosmos-Tokenize1-DV8x16x16-720p-HDVILA",
        ),
        checkpoint=dict(
            load_path="checkpoints/Cosmos-Tokenize1-DV8x16x16-720p/model.pt",
            strict_resume=True,
            load_training_state=True,
            jit=dict(input_shape=[1, 3, 17, 512, 512]),
        ),
    )
)

# Post-training config for Cosmos-Tokenize1-CV4x8x8-360p-HDVILA
Cosmos_Tokenize1_CV4x8x8_360p_HDVILA: LazyDict = LazyDict(
    dict(
        defaults=[
            "/experiment/video_basic",
            {"override /network": "continuous_factorized_video"},
            {"override /data_train": "hdvila_video360"},
            {"override /data_val": "hdvila_video360"},
            "_self_",
        ],
        dataloader_train=dict(
            dataset=dict(
                crop_height=256,
                num_video_frames=49,
            ),
            batch_size=1,
        ),
        dataloader_val=dict(
            dataset=dict(
                crop_height=256,
                num_video_frames=49,
            ),
            batch_size=1,
        ),
        model=dict(
            config=dict(
                network=dict(
                    channels_mult=[2, 4, 4],
                    patch_size=2,
                    legacy_mode=False,
                    temporal_compression=4,
                    spatial_compression=8,
                )
            )
        ),
        job=dict(
            project="posttraining",
            group="tokenizer",
            name="Cosmos-Tokenize1-CV4x8x8-360p-HDVILA",
        ),
        checkpoint=dict(
            load_path="checkpoints/Cosmos-Tokenize1-CV4x8x8-360p/model.pt",
            strict_resume=True,
            load_training_state=True,
            jit=dict(input_shape=[1, 3, 17, 512, 512]),
        ),
    )
)

# Post-training config for Cosmos-Tokenize1-DV4x8x8-360p-HDVILA
Cosmos_Tokenize1_DV4x8x8_360p_HDVILA: LazyDict = LazyDict(
    dict(
        defaults=[
            "/experiment/video_basic",
            {"override /network": "discrete_factorized_video"},
            {"override /data_train": "hdvila_video360"},
            {"override /data_val": "hdvila_video360"},
            "_self_",
        ],
        dataloader_train=dict(
            dataset=dict(
                crop_height=256,
                num_video_frames=49,
            ),
            batch_size=1,
        ),
        dataloader_val=dict(
            dataset=dict(
                crop_height=256,
                num_video_frames=49,
            ),
            batch_size=1,
        ),
        model=dict(
            config=dict(
                network=dict(
                    persistent_quantizer=False,
                    z_channels=256,
                    channels_mult=[2, 4, 4],
                    patch_size=2,
                    legacy_mode=False,
                    temporal_compression=4,
                    spatial_compression=8,
                )
            )
        ),
        job=dict(
            project="posttraining",
            group="tokenizer",
            name="Cosmos-Tokenize1-DV4x8x8-360p-HDVILA",
        ),
        checkpoint=dict(
            load_path="checkpoints/Cosmos-Tokenize1-DV4x8x8-360p/model.pt",
            strict_resume=True,
            load_training_state=True,
            jit=dict(input_shape=[1, 3, 17, 512, 512]),
        ),
    )
)

cs = ConfigStore.instance()

for _item in [
    Cosmos_Tokenize1_CV8x8x8_720p_HDVILA,
    Cosmos_Tokenize1_DV8x16x16_720p_HDVILA,
    Cosmos_Tokenize1_CV4x8x8_360p_HDVILA,
    Cosmos_Tokenize1_DV4x8x8_360p_HDVILA,
]:
    experiment_name = [name for name, value in globals().items() if value is _item][0]

    log.info(f"Registering experiment: {experiment_name}")
    cs.store(
        group="experiment",
        package="_global_",
        name=experiment_name,
        node=_item,
    )

    mock_experiment = f"mock_{experiment_name}"
    log.info(f"Registering mock experiment: {mock_experiment}")
    _debug_item = create_debug_job_with_mock_data(_item["job"]["name"])
    cs.store(
        group="experiment",
        package="_global_",
        name=mock_experiment,
        node=_debug_item,
    )