Spaces:
Build error
Build error
File size: 6,827 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from enum import Enum
import io
import tempfile
import cv2
import numpy as np
class CompressionFormat(Enum):
JPG = "jpg"
PNG = "png"
EXR = "exr"
MP4 = "mp4"
NPZ = "npz"
IMAGE_COMPRESSION_FORMATS = (CompressionFormat.JPG, CompressionFormat.PNG, CompressionFormat.EXR)
def compress_images(images: np.ndarray | None, format: CompressionFormat,
is_depth: bool = False, is_bool: bool = False) -> list[bytes] | None:
"""
Compress image(s) to the desired image format.
Depth images should be encoded as EXR to preserve the data.
"""
if images is None:
return None
if is_depth or is_bool:
assert images.ndim == 3, images.shape
else:
assert images.ndim == 4 and images.shape[-1] == 3, images.shape
flags = []
if format == CompressionFormat.JPG:
flags = [int(cv2.IMWRITE_JPEG_QUALITY), 100]
result = []
if is_depth:
# Note: leave as-is (floating point) to avoid quantization errors.
assert format in (CompressionFormat.EXR, CompressionFormat.NPZ), "Depth images must be encoded as EXR or NPZ"
images = images.astype(np.float32)
elif is_bool:
assert format == CompressionFormat.NPZ, "Bool images (e.g. masks) must be encoded as NPZ"
images = images.astype(np.bool)
else:
images = (images * 255.0).astype(np.uint8)
if format == CompressionFormat.NPZ:
with io.BytesIO() as f:
np.savez_compressed(f, images)
result.append(f.getvalue())
else:
assert format in IMAGE_COMPRESSION_FORMATS, f"Unsupported image compression format: {format}"
for i in range(images.shape[0]):
_, encoded = cv2.imencode(f".{format.value}", images[i], flags)
result.append(encoded.tobytes())
return result
def decompress_buffer(buffers: list[bytes] | None, format: CompressionFormat,
is_depth: bool = False, is_bool: bool = False) -> np.ndarray | None:
"""
Returns the decoded image as 0..1 float values (or 0..inf for depth).
"""
if buffers is None:
return None
assert not (is_depth and is_bool), "Cannot be both a depth and a bool buffer."
images = []
for buf in buffers:
if format == CompressionFormat.MP4:
assert not is_bool and not is_depth, "Cannot decode a mask or depth from a video."
# TODO: not sure why, but reading directly from the buffer leads to a segfault.
# cap = cv2.VideoCapture(io.BytesIO(buf), apiPreference=cv2.CAP_FFMPEG, params=[])
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=True) as f:
f.write(buf)
cap = cv2.VideoCapture(f.name)
while True:
ret, image = cap.read()
if not ret:
break
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Note: the conversion from 0..1 to -1..1 will be done by the model.
image = image.astype(np.float32) / 255.0
images.append(image[None, ...])
cap.release()
else:
if format == CompressionFormat.NPZ:
image = np.load(io.BytesIO(buf), allow_pickle=False)
if hasattr(image, "files"):
assert len(image.files) == 1, image.files
image = image[image.files[0]]
# We assume it was saved with the right value range, shape and dtype.
images.append(image)
else:
buf_np = np.frombuffer(buf, dtype=np.uint8)
# OpenCV will automatically guess the image format.
flags = cv2.IMREAD_ANYDEPTH if is_depth else cv2.IMREAD_ANYCOLOR
image = np.array(cv2.imdecode(buf_np, flags))
if is_bool:
image = image.astype(np.bool)
elif image.dtype == np.uint8:
image = image.astype(np.float32) / 255.0
images.append(image[None, ...])
return np.concatenate(images, axis=0)
def pad_or_trim_array(arr: np.ndarray | None, target_size: int) -> np.ndarray | None:
"""
Pad or trim the array to the target size.
"""
if arr is None:
return None
n = arr.shape[0]
if n == target_size:
return arr
elif n > target_size:
return arr[:target_size]
else:
reps = (target_size - n, *([1] * (arr.ndim - 1)))
return np.concatenate([
arr,
np.tile(arr[-1:], reps)
], axis=0)
def pad_or_trim_encoded_buffers(buffers: list[bytes] | None, format: CompressionFormat,
target_size: int) -> list[bytes] | None:
"""
Pad or trim the encoded buffers to the target size.
"""
if buffers is None:
return None
if format in (CompressionFormat.JPG, CompressionFormat.PNG, CompressionFormat.EXR):
# We just assume that there is one buffer per entry
n = len(buffers)
if n == target_size:
return buffers
elif n > target_size:
return buffers[:target_size]
else:
return buffers + [buffers[-1]] * (target_size - n)
elif format == CompressionFormat.NPZ:
assert len(buffers) == 1, "NPZ buffers should be a single buffer"
arr = np.load(io.BytesIO(buffers[0]), allow_pickle=False)
if hasattr(arr, "files"):
assert len(arr.files) == 1, arr.files
arr = arr[arr.files[0]]
arr = pad_or_trim_array(arr, target_size)
with io.BytesIO() as f:
np.savez_compressed(f, arr)
return [f.getvalue()]
elif format == CompressionFormat.MP4:
# We assume there is one buffer per video
assert len(buffers) == 1, "MP4 buffers should be a single buffer"
buf = buffers[0]
result = []
# TODO: do all this with in-memory buffers instead of temporary files
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=True) as f:
f.write(buf)
# Read back the video frame by frame
cap = cv2.VideoCapture(f.name)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=True) as f_out:
out = cv2.VideoWriter(f_out.name, fourcc, fps, (width, height))
n_written = 0
last_frame = None
for _ in range(target_size):
ret, frame = cap.read()
if not ret:
break
out.write(frame)
last_frame = frame
n_written += 1
# If target size is longer than the original video, repeat the last valid frame
for i in range(n_written, target_size):
out.write(last_frame)
out.release()
f_out.seek(0)
result.append(f_out.read())
cap.release()
return result
else:
raise ValueError(f"Unsupported compression format: {format}")
|