File size: 13,992 Bytes
28451f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
# http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import argparse
import os
import signal

from loguru import logger as log

from v2v_utils import move_to_device, clone_tensors


TORCHRUN_DEFAULT_MASTER_ADDR = 'localhost'
TORCHRUN_DEFAULT_MASTER_PORT = 12355


def _get_inference_class(cosmos_variant: str):
	if cosmos_variant == 'predict1':
		from cosmos_predict1.diffusion.inference.gen3c_persistent import Gen3cPersistentModel
		from cosmos_predict1.utils.distributed import is_rank0
		return Gen3cPersistentModel, is_rank0
	else:
		raise ValueError(f"Unsupported cosmos variant: {cosmos_variant}")


def _inference_worker(rank: int, args: argparse.Namespace,
					  gpu_count: int,
					  cosmos_variant: str,
					  input_queues: 'list[torch.multiprocessing.Queue]',
					  result_queue: 'torch.multiprocessing.Queue',
					  attrs_queue: 'torch.multiprocessing.Queue'):
	"""
	One such function will run, in a separate process, for each GPU.
	Each process loads the model and keeps it in memory.
	"""
	log.debug(f'inference_worker for rank {rank} starting, doing imports now')
	import torch
	import torch.distributed as dist

	InferenceAR, is_tp_cp_pp_rank0 = _get_inference_class(cosmos_variant)
	log.debug(f'inference_worker for rank {rank} done with imports.')

	# The FQDN of the host that is running worker with rank 0; used to initialize the Torch Distributed backend.
	os.environ.setdefault("MASTER_ADDR", TORCHRUN_DEFAULT_MASTER_ADDR)
	# The port on the MASTER_ADDR that can be used to host the C10d TCP store.
	os.environ.setdefault("MASTER_PORT", str(TORCHRUN_DEFAULT_MASTER_PORT))
	# The local rank.
	os.environ["LOCAL_RANK"] = str(rank)
	# The global rank.
	os.environ["RANK"] = str(rank)
	# The rank of the worker group. A number between 0 and max_nnodes. When running a single worker group per node, this is the rank of the node.
	os.environ["GROUP_RANK"] = str(rank)
	# The rank of the worker across all the workers that have the same role. The role of the worker is specified in the WorkerSpec.
	os.environ["ROLE_RANK"] = str(rank)
	# The local world size (e.g. number of workers running locally); equals to --nproc-per-node specified on torchrun.
	os.environ["LOCAL_WORLD_SIZE"] = str(gpu_count)
	# The world size (total number of workers in the job).
	os.environ["WORLD_SIZE"] = str(gpu_count)
	# The total number of workers that was launched with the same role specified in WorkerSpec.
	os.environ["ROLE_WORLD_SIZE"] = str(gpu_count)
	# # The number of worker group restarts so far.
	# os.environ["TORCHELASTIC_RESTART_COUNT"] = TODO
	# # The configured maximum number of restarts.
	# os.environ["TORCHELASTIC_MAX_RESTARTS"] = TODO
	# # Equal to the rendezvous run_id (e.g. unique job id).
	# os.environ["TORCHELASTIC_RUN_ID"] = TODO
	# # System executable override. If provided, the python user script will use the value of PYTHON_EXEC as executable. The sys.executable is used by default.
	# os.environ["PYTHON_EXEC"] = TODO

	# We're already parallelizing over the context, so we can't also parallelize inside the tokenizers (?)
	os.environ["TOKENIZERS_PARALLELISM"] = "false"

	device = f"cuda:{rank}"
	torch.cuda.set_device(rank)

	input_queue = input_queues[rank]
	del input_queues

	# Load model once
	log.debug(f'inference_worker for rank {rank} creating the model object now')
	local_model = InferenceAR(args)
	del args

	log.debug(f'inference_worker for rank {rank} ready, pushing a "ready" message to the queue')
	result_queue.put((rank, "ready"))

	# Install interrupt signal handler so that we can shut down gracefully.
	should_quit = False
	def signal_handler(signum, frame):
		nonlocal should_quit
		log.info(f"[RANK{rank}] Received signal {signum}, shutting down")
		should_quit = True
		try:
			input_queue.put(None)
		except ValueError:
			pass

	signal.signal(signal.SIGINT, signal_handler)

	while not should_quit:
		try:
			inputs_task = input_queue.get()
		except ValueError:
			# Queue was closed, we can exit.
			log.debug(f"[RANK{rank}] Input queue was closed, exiting.")
			break
		if inputs_task is None:
			# Special sentinel value to indicate that we are done and can exit.
			log.debug(f"[RANK{rank}] Got input {inputs_task}, exiting.")
			break

		# Note: we don't need to chunk the inputs for this rank / process, this is done
		#       automatically in the model.
		# Note: we don't need to move the inputs to a specific device either since the
		#       Gen3C API expects NumPy arrays.
		if False:
			log.debug(f"[RANK{rank}] Moving task to {device=}")
			inputs_task = move_to_device(inputs_task, device)

		# Run the requested task
		with torch.no_grad():
			task_type, args, kwargs = inputs_task
			log.debug(f"[RANK{rank}] Got task: {task_type=}")

			if task_type == 'inference':
				log.debug(f"[RANK{rank}] Running `inference_on_cameras()`...")
				output = local_model.inference_on_cameras(*args, **kwargs)
				log.debug(f"[RANK{rank}] Done `inference_on_cameras()`!")

				if is_tp_cp_pp_rank0():
					log.debug(f"[RANK{rank}] Moving outputs of `inference_on_cameras()` to the CPU")
					output = move_to_device(output, device='cpu')
					log.debug(f"[RANK{rank}] Pushing outputs of `inference_on_cameras()` to the results queue")
					result_queue.put(output)

			elif task_type == 'seeding':
				log.debug(f"[RANK{rank}] Calling `seed_model_from_values()...`")
				if cosmos_variant == 'predict1':
					output = local_model.seed_model_from_values(*args, **kwargs)
				else:
					raise NotImplementedError(f"Unsupported cosmos variant: {cosmos_variant}")
				output = move_to_device(output, device='cpu')
				result_queue.put((rank, "seed_model_from_values_done", output))
				log.debug(f"[RANK{rank}] Done with `seed_model_from_values()`")

			elif task_type == 'clear_cache':
				log.debug(f"[RANK{rank}] Calling `clear_cache()...`")
				local_model.clear_cache()
				result_queue.put((rank, "clear_cache_done"))
				log.debug(f"[RANK{rank}] Done with `clear_cache()`")

			elif task_type == 'get_cache_input_depths':
				log.debug(f"[RANK{rank}] Calling `get_cache_input_depths()...`")
				input_depths = local_model.get_cache_input_depths()
				attrs_queue.put(('cache_input_depths', input_depths.cpu(), True))
				log.debug(f"[RANK{rank}] Done with `get_cache_input_depths()`")

			elif task_type == 'getattr':
				assert kwargs is None
				assert len(args) == 1
				attr_name = args[0]
				assert isinstance(attr_name, str)
				has_attr = hasattr(local_model, attr_name)
				attr_value_or_none = getattr(local_model, attr_name)

				if has_attr and (attr_value_or_none is not None) and torch.is_tensor(attr_value_or_none):
					log.debug(f"[RANK{rank}] Attribute {attr_name=} is a torch tensor on "
						  f"device {attr_value_or_none.device}, cloning it before sending it through the queue")
					attr_value_or_none = attr_value_or_none.clone()

				log.debug(f"[RANK{rank}] Pushing attribute value for {attr_name=}")
				attrs_queue.put((attr_name, attr_value_or_none, has_attr))

			else:
				raise NotImplementedError(f"Unsupported task type for Cosmos inference worker: {task_type}")

	# Cleanup before exiting
	local_model.cleanup()
	del local_model


def inference_worker(*args, **kwargs):
	try:
		_inference_worker(*args, **kwargs)
	except Exception as e:
		import traceback
		rank = os.environ.get("LOCAL_RANK", "(unknown)")
		log.error(f"[RANK{rank}] encountered exception: {e}. Will re-raise after cleanup."
				  f" Stack trace:\n{traceback.format_exc()}")

		try:
			import torch.distributed as dist
			dist.destroy_process_group()
			log.info(f"[RANK{rank}] Destroyed model parallel group after catching exception."
					 " Will re-raise now.")
		except Exception as _:
			pass

		raise e


class MultiGPUInferenceAR():
	"""
	Adapter class to run multi-GPU Cosmos inference in the context of the FastAPI inference server.
	This class implements the same interface as `InferenceAR`, but spawns one process per GPU and
	forwards inference requests to the multiple processes via a work queue.

	The worker processes wait for work from the queue, perform inference, and gather all results
	on the rank 0 process. That process then pushes results to the result queue.
	"""
	def __init__(self, gpu_count: int, cosmos_variant: str, args: argparse.Namespace):
		import torch
		import torch.multiprocessing as mp

		self.gpu_count = gpu_count
		assert self.gpu_count <= torch.cuda.device_count(), \
			   f"Requested {self.gpu_count} GPUs, but only {torch.cuda.device_count()} are available."

		ctx = mp.get_context('spawn')
		manager = ctx.Manager()
		self.input_queues: list[mp.Queue] = [ctx.Queue() for _ in range(self.gpu_count)]
		self.result_queue = manager.Queue()
		self.attrs_queue = manager.Queue()

		log.info(f"Spawning {self.gpu_count} processes (one per GPU)")
		self.ctx = mp.spawn(
			inference_worker,
			args=(args, self.gpu_count, cosmos_variant,
				  self.input_queues, self.result_queue, self.attrs_queue),
			nprocs=self.gpu_count,
			join=False
		)

		log.info(f"Waiting for {self.gpu_count} processes to load the model...")
		for _ in range(self.gpu_count):
			v = self.result_queue.get()
			if not isinstance(v, tuple) or len(v) != 2 or v[1] != "ready":
				raise ValueError(f"Expected a 'ready' message from each process, but received: {v}")
			log.info(f"Process {v[0]} is ready.")


	def inference_on_cameras(self, *args, **kwargs):
		log.debug(f"inference_on_cameras(): submitting request to {len(self.input_queues)} inference processes.")
		for iq in self.input_queues:
			# Send the same input to each process
			task = ('inference', args, kwargs)
			iq.put(task)

		# Wait on the result queue to produce the result (this could take a while).
		log.debug(f"inference_on_cameras(): waiting for result...")
		outputs = self.result_queue.get()
		log.debug(f"inference_on_cameras(): got inference results! Cloning and returning.")
		return clone_tensors(outputs)


	def seed_model_from_values(self, *args, **kwargs):
		log.debug(f"seed_model_from_values(): submitting request to {len(self.input_queues)} inference processes.")
		for iq in self.input_queues:
			task = ('seeding', args, kwargs)
			iq.put(task)

		# TODO: refactor this, and maybe use some events or another primitive
		log.info(f"Waiting for {self.gpu_count} processes to be done with seeding...")
		for i in range(self.gpu_count):
			v = self.result_queue.get()
			if not isinstance(v, tuple) or len(v) != 3 or v[1] != "seed_model_from_values_done":
				raise ValueError(f"Expected a 'seed_model_from_values_done' message from each process, but received: {v}")
			log.info(f"Process {v[0]} is done with `seed_model_from_values()`.")

			# Arbitrarily pick the output from the first process
			if i == 0:
				outputs = v[2]

		return clone_tensors(outputs)


	def clear_cache(self):
		for iq in self.input_queues:
			task = ('clear_cache', None, None)
			iq.put(task)

		# TODO: refactor this, and maybe use some events or another primitive
		log.info(f"Waiting for {self.gpu_count} processes to be done with clear_cache...")
		for _ in range(self.gpu_count):
			v = self.result_queue.get()
			if not isinstance(v, tuple) or len(v) != 2 or v[1] != "clear_cache_done":
				raise ValueError(f"Expected a 'clear_cache_done' message from each process, but received: {v}")
			log.info(f"Process {v[0]} is done with `clear_cache()`.")


	def get_cache_input_depths(self):
		name = 'cache_input_depths'
		task = ('get_cache_input_depths', None, None)
		self.input_queues[0].put(task)

		# TODO: refactor this, and maybe use some events or another primitive
		looked_up_name, value, exists = self.attrs_queue.get()
		if looked_up_name != name:
			# TODO: this could be handled better (retry or enforce some ordering maybe).
			raise ValueError(f"Queried model for attribute '{name}' but got attribute '{looked_up_name}',"
							 " there was likely a race condition.")
		log.debug(f"Got a valid response, returning value for `get_cache_input_depths()`")
		return value


	def __getattr__(self, name: str):
		log.debug(f"__getattr__({name=}) called")
		# Note: this will not be called for methods we implement here, or attributes
		# that actually exist in this object.
		# Query the attribute from rank 0 (arbitrarily)
		task = ('getattr', (name,), None)
		self.input_queues[0].put(task)

		# Get result (blocking)
		log.debug(f"Waiting for response on `attrs_queue`...")
		looked_up_name, value, exists = self.attrs_queue.get()
		if looked_up_name != name:
			# TODO: this could be handled better (retry or enforce some ordering maybe).
			raise ValueError(f"Queried model for attribute '{name}' but got attribute '{looked_up_name}',"
							 " there was likely a race condition.")
		if not exists:
			raise AttributeError(f"Model has no attribute named '{name}'")
		log.debug(f"Got a valid response, returning {name} == {value}")
		return value


	def cleanup(self):
		"""
		Clean up resources before shutting down.
		"""
		log.info(f"MultiGPUInferenceAR winding down, asking {len(self.input_queues)} processes to clean up.")

		# "Close" all queues (there's no actual `close` method in PyTorch MP queues)
		for iq in self.input_queues:
			iq.put(None)

		# Wait for all processes to finish
		log.info(f"Waiting for {len(self.input_queues)} processes to finish (join).")
		self.ctx.join()
		log.info(f"{len(self.input_queues)} processes have finished.")