Spaces:
Build error
Build error
File size: 13,992 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import argparse
import os
import signal
from loguru import logger as log
from v2v_utils import move_to_device, clone_tensors
TORCHRUN_DEFAULT_MASTER_ADDR = 'localhost'
TORCHRUN_DEFAULT_MASTER_PORT = 12355
def _get_inference_class(cosmos_variant: str):
if cosmos_variant == 'predict1':
from cosmos_predict1.diffusion.inference.gen3c_persistent import Gen3cPersistentModel
from cosmos_predict1.utils.distributed import is_rank0
return Gen3cPersistentModel, is_rank0
else:
raise ValueError(f"Unsupported cosmos variant: {cosmos_variant}")
def _inference_worker(rank: int, args: argparse.Namespace,
gpu_count: int,
cosmos_variant: str,
input_queues: 'list[torch.multiprocessing.Queue]',
result_queue: 'torch.multiprocessing.Queue',
attrs_queue: 'torch.multiprocessing.Queue'):
"""
One such function will run, in a separate process, for each GPU.
Each process loads the model and keeps it in memory.
"""
log.debug(f'inference_worker for rank {rank} starting, doing imports now')
import torch
import torch.distributed as dist
InferenceAR, is_tp_cp_pp_rank0 = _get_inference_class(cosmos_variant)
log.debug(f'inference_worker for rank {rank} done with imports.')
# The FQDN of the host that is running worker with rank 0; used to initialize the Torch Distributed backend.
os.environ.setdefault("MASTER_ADDR", TORCHRUN_DEFAULT_MASTER_ADDR)
# The port on the MASTER_ADDR that can be used to host the C10d TCP store.
os.environ.setdefault("MASTER_PORT", str(TORCHRUN_DEFAULT_MASTER_PORT))
# The local rank.
os.environ["LOCAL_RANK"] = str(rank)
# The global rank.
os.environ["RANK"] = str(rank)
# The rank of the worker group. A number between 0 and max_nnodes. When running a single worker group per node, this is the rank of the node.
os.environ["GROUP_RANK"] = str(rank)
# The rank of the worker across all the workers that have the same role. The role of the worker is specified in the WorkerSpec.
os.environ["ROLE_RANK"] = str(rank)
# The local world size (e.g. number of workers running locally); equals to --nproc-per-node specified on torchrun.
os.environ["LOCAL_WORLD_SIZE"] = str(gpu_count)
# The world size (total number of workers in the job).
os.environ["WORLD_SIZE"] = str(gpu_count)
# The total number of workers that was launched with the same role specified in WorkerSpec.
os.environ["ROLE_WORLD_SIZE"] = str(gpu_count)
# # The number of worker group restarts so far.
# os.environ["TORCHELASTIC_RESTART_COUNT"] = TODO
# # The configured maximum number of restarts.
# os.environ["TORCHELASTIC_MAX_RESTARTS"] = TODO
# # Equal to the rendezvous run_id (e.g. unique job id).
# os.environ["TORCHELASTIC_RUN_ID"] = TODO
# # System executable override. If provided, the python user script will use the value of PYTHON_EXEC as executable. The sys.executable is used by default.
# os.environ["PYTHON_EXEC"] = TODO
# We're already parallelizing over the context, so we can't also parallelize inside the tokenizers (?)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
device = f"cuda:{rank}"
torch.cuda.set_device(rank)
input_queue = input_queues[rank]
del input_queues
# Load model once
log.debug(f'inference_worker for rank {rank} creating the model object now')
local_model = InferenceAR(args)
del args
log.debug(f'inference_worker for rank {rank} ready, pushing a "ready" message to the queue')
result_queue.put((rank, "ready"))
# Install interrupt signal handler so that we can shut down gracefully.
should_quit = False
def signal_handler(signum, frame):
nonlocal should_quit
log.info(f"[RANK{rank}] Received signal {signum}, shutting down")
should_quit = True
try:
input_queue.put(None)
except ValueError:
pass
signal.signal(signal.SIGINT, signal_handler)
while not should_quit:
try:
inputs_task = input_queue.get()
except ValueError:
# Queue was closed, we can exit.
log.debug(f"[RANK{rank}] Input queue was closed, exiting.")
break
if inputs_task is None:
# Special sentinel value to indicate that we are done and can exit.
log.debug(f"[RANK{rank}] Got input {inputs_task}, exiting.")
break
# Note: we don't need to chunk the inputs for this rank / process, this is done
# automatically in the model.
# Note: we don't need to move the inputs to a specific device either since the
# Gen3C API expects NumPy arrays.
if False:
log.debug(f"[RANK{rank}] Moving task to {device=}")
inputs_task = move_to_device(inputs_task, device)
# Run the requested task
with torch.no_grad():
task_type, args, kwargs = inputs_task
log.debug(f"[RANK{rank}] Got task: {task_type=}")
if task_type == 'inference':
log.debug(f"[RANK{rank}] Running `inference_on_cameras()`...")
output = local_model.inference_on_cameras(*args, **kwargs)
log.debug(f"[RANK{rank}] Done `inference_on_cameras()`!")
if is_tp_cp_pp_rank0():
log.debug(f"[RANK{rank}] Moving outputs of `inference_on_cameras()` to the CPU")
output = move_to_device(output, device='cpu')
log.debug(f"[RANK{rank}] Pushing outputs of `inference_on_cameras()` to the results queue")
result_queue.put(output)
elif task_type == 'seeding':
log.debug(f"[RANK{rank}] Calling `seed_model_from_values()...`")
if cosmos_variant == 'predict1':
output = local_model.seed_model_from_values(*args, **kwargs)
else:
raise NotImplementedError(f"Unsupported cosmos variant: {cosmos_variant}")
output = move_to_device(output, device='cpu')
result_queue.put((rank, "seed_model_from_values_done", output))
log.debug(f"[RANK{rank}] Done with `seed_model_from_values()`")
elif task_type == 'clear_cache':
log.debug(f"[RANK{rank}] Calling `clear_cache()...`")
local_model.clear_cache()
result_queue.put((rank, "clear_cache_done"))
log.debug(f"[RANK{rank}] Done with `clear_cache()`")
elif task_type == 'get_cache_input_depths':
log.debug(f"[RANK{rank}] Calling `get_cache_input_depths()...`")
input_depths = local_model.get_cache_input_depths()
attrs_queue.put(('cache_input_depths', input_depths.cpu(), True))
log.debug(f"[RANK{rank}] Done with `get_cache_input_depths()`")
elif task_type == 'getattr':
assert kwargs is None
assert len(args) == 1
attr_name = args[0]
assert isinstance(attr_name, str)
has_attr = hasattr(local_model, attr_name)
attr_value_or_none = getattr(local_model, attr_name)
if has_attr and (attr_value_or_none is not None) and torch.is_tensor(attr_value_or_none):
log.debug(f"[RANK{rank}] Attribute {attr_name=} is a torch tensor on "
f"device {attr_value_or_none.device}, cloning it before sending it through the queue")
attr_value_or_none = attr_value_or_none.clone()
log.debug(f"[RANK{rank}] Pushing attribute value for {attr_name=}")
attrs_queue.put((attr_name, attr_value_or_none, has_attr))
else:
raise NotImplementedError(f"Unsupported task type for Cosmos inference worker: {task_type}")
# Cleanup before exiting
local_model.cleanup()
del local_model
def inference_worker(*args, **kwargs):
try:
_inference_worker(*args, **kwargs)
except Exception as e:
import traceback
rank = os.environ.get("LOCAL_RANK", "(unknown)")
log.error(f"[RANK{rank}] encountered exception: {e}. Will re-raise after cleanup."
f" Stack trace:\n{traceback.format_exc()}")
try:
import torch.distributed as dist
dist.destroy_process_group()
log.info(f"[RANK{rank}] Destroyed model parallel group after catching exception."
" Will re-raise now.")
except Exception as _:
pass
raise e
class MultiGPUInferenceAR():
"""
Adapter class to run multi-GPU Cosmos inference in the context of the FastAPI inference server.
This class implements the same interface as `InferenceAR`, but spawns one process per GPU and
forwards inference requests to the multiple processes via a work queue.
The worker processes wait for work from the queue, perform inference, and gather all results
on the rank 0 process. That process then pushes results to the result queue.
"""
def __init__(self, gpu_count: int, cosmos_variant: str, args: argparse.Namespace):
import torch
import torch.multiprocessing as mp
self.gpu_count = gpu_count
assert self.gpu_count <= torch.cuda.device_count(), \
f"Requested {self.gpu_count} GPUs, but only {torch.cuda.device_count()} are available."
ctx = mp.get_context('spawn')
manager = ctx.Manager()
self.input_queues: list[mp.Queue] = [ctx.Queue() for _ in range(self.gpu_count)]
self.result_queue = manager.Queue()
self.attrs_queue = manager.Queue()
log.info(f"Spawning {self.gpu_count} processes (one per GPU)")
self.ctx = mp.spawn(
inference_worker,
args=(args, self.gpu_count, cosmos_variant,
self.input_queues, self.result_queue, self.attrs_queue),
nprocs=self.gpu_count,
join=False
)
log.info(f"Waiting for {self.gpu_count} processes to load the model...")
for _ in range(self.gpu_count):
v = self.result_queue.get()
if not isinstance(v, tuple) or len(v) != 2 or v[1] != "ready":
raise ValueError(f"Expected a 'ready' message from each process, but received: {v}")
log.info(f"Process {v[0]} is ready.")
def inference_on_cameras(self, *args, **kwargs):
log.debug(f"inference_on_cameras(): submitting request to {len(self.input_queues)} inference processes.")
for iq in self.input_queues:
# Send the same input to each process
task = ('inference', args, kwargs)
iq.put(task)
# Wait on the result queue to produce the result (this could take a while).
log.debug(f"inference_on_cameras(): waiting for result...")
outputs = self.result_queue.get()
log.debug(f"inference_on_cameras(): got inference results! Cloning and returning.")
return clone_tensors(outputs)
def seed_model_from_values(self, *args, **kwargs):
log.debug(f"seed_model_from_values(): submitting request to {len(self.input_queues)} inference processes.")
for iq in self.input_queues:
task = ('seeding', args, kwargs)
iq.put(task)
# TODO: refactor this, and maybe use some events or another primitive
log.info(f"Waiting for {self.gpu_count} processes to be done with seeding...")
for i in range(self.gpu_count):
v = self.result_queue.get()
if not isinstance(v, tuple) or len(v) != 3 or v[1] != "seed_model_from_values_done":
raise ValueError(f"Expected a 'seed_model_from_values_done' message from each process, but received: {v}")
log.info(f"Process {v[0]} is done with `seed_model_from_values()`.")
# Arbitrarily pick the output from the first process
if i == 0:
outputs = v[2]
return clone_tensors(outputs)
def clear_cache(self):
for iq in self.input_queues:
task = ('clear_cache', None, None)
iq.put(task)
# TODO: refactor this, and maybe use some events or another primitive
log.info(f"Waiting for {self.gpu_count} processes to be done with clear_cache...")
for _ in range(self.gpu_count):
v = self.result_queue.get()
if not isinstance(v, tuple) or len(v) != 2 or v[1] != "clear_cache_done":
raise ValueError(f"Expected a 'clear_cache_done' message from each process, but received: {v}")
log.info(f"Process {v[0]} is done with `clear_cache()`.")
def get_cache_input_depths(self):
name = 'cache_input_depths'
task = ('get_cache_input_depths', None, None)
self.input_queues[0].put(task)
# TODO: refactor this, and maybe use some events or another primitive
looked_up_name, value, exists = self.attrs_queue.get()
if looked_up_name != name:
# TODO: this could be handled better (retry or enforce some ordering maybe).
raise ValueError(f"Queried model for attribute '{name}' but got attribute '{looked_up_name}',"
" there was likely a race condition.")
log.debug(f"Got a valid response, returning value for `get_cache_input_depths()`")
return value
def __getattr__(self, name: str):
log.debug(f"__getattr__({name=}) called")
# Note: this will not be called for methods we implement here, or attributes
# that actually exist in this object.
# Query the attribute from rank 0 (arbitrarily)
task = ('getattr', (name,), None)
self.input_queues[0].put(task)
# Get result (blocking)
log.debug(f"Waiting for response on `attrs_queue`...")
looked_up_name, value, exists = self.attrs_queue.get()
if looked_up_name != name:
# TODO: this could be handled better (retry or enforce some ordering maybe).
raise ValueError(f"Queried model for attribute '{name}' but got attribute '{looked_up_name}',"
" there was likely a race condition.")
if not exists:
raise AttributeError(f"Model has no attribute named '{name}'")
log.debug(f"Got a valid response, returning {name} == {value}")
return value
def cleanup(self):
"""
Clean up resources before shutting down.
"""
log.info(f"MultiGPUInferenceAR winding down, asking {len(self.input_queues)} processes to clean up.")
# "Close" all queues (there's no actual `close` method in PyTorch MP queues)
for iq in self.input_queues:
iq.put(None)
# Wait for all processes to finish
log.info(f"Waiting for {len(self.input_queues)} processes to finish (join).")
self.ctx.join()
log.info(f"{len(self.input_queues)} processes have finished.")
|