Spaces:
Build error
Build error
File size: 9,258 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import time
try:
from typing import override
except ImportError:
def override(f):
return f
from loguru import logger as log
import numpy as np
from api_types import InferenceRequest, InferenceResult, CompressedInferenceResult, SeedingRequest, SeedingResult
from encoding import compress_images, CompressionFormat
from server_base import InferenceModel
class CosmosBaseModel(InferenceModel):
"""
Wraps a video generative model.
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
@override
async def make_test_image(self) -> InferenceResult:
raise NotImplementedError("Not implemented: make_test_image()")
async def seed_model(self, req: SeedingRequest) -> None:
import torch
log.info(f"Seeding the model with request ID '{req.request_id}' ({len(req)} frames)")
# TODO: option to seed without clearing the existing cache
if self.pose_history_w2c:
log.info("[i] Clearing existing 3D cache and history due to seeding.")
self.model.clear_cache()
self.pose_history_w2c.clear()
self.intrinsics_history.clear()
if hasattr(self.model, 'seed_model_from_values'):
seeding_method = self.model.seed_model_from_values
else:
raise RuntimeError(f"Could not locate seeding method in model.")
model_result = seeding_method(
images_np=req.images,
depths_np=req.depths,
masks_np=req.masks,
world_to_cameras_np=req.world_to_cameras(),
focal_lengths_np=req.focal_lengths,
principal_point_rel_np=req.principal_points,
resolutions=req.resolutions,
)
self.model_seeded = True
log.info("[+] Model seeded.")
out_depths = None if (req.depths is not None) else self.model.get_cache_input_depths().cpu().numpy()
if model_result is None:
return SeedingResult.from_request(req, fallback_depths=out_depths)
else:
model_result = list(model_result)
for i, r in enumerate(model_result):
if isinstance(r, torch.Tensor):
model_result[i] = r.cpu().numpy()
(estimated_w2c_b44, estimated_focal_lengths_b2,
estimated_principal_point_abs_b2, working_resolutions_b2) = model_result
# Principal point is expected to be relative to the resolution
estimated_principal_point_rel_b2 = estimated_principal_point_abs_b2 / working_resolutions_b2
return SeedingResult(
request_id=req.request_id,
cameras_to_world=estimated_w2c_b44[:, :3, :],
focal_lengths=estimated_focal_lengths_b2,
principal_points=estimated_principal_point_rel_b2,
resolutions=working_resolutions_b2,
depths=out_depths
)
@override
async def run_inference(self, req: InferenceRequest) -> InferenceResult:
import torch
async with self.inference_lock:
log.info(f"[+] Running inference for request \"{req.request_id}\"...")
start_time = time.time()
w2c = req.world_to_cameras()
# Tricky: we receive intrinsics as in absolute units, assuming the
# resolution requested by the user. But the V2V codebase expects
# intrinsics in absolute units w.r.t. the *original seeding resolution*.
original_res = req.resolutions.copy()
original_res[:, 0] = self.model.W
original_res[:, 1] = self.model.H
intrinsics = req.intrinsics_matrix(for_resolutions=original_res)
# We allow some overlaps on the cameras here during the inference.
if len(self.pose_history_w2c) == 0:
# First request: no frames to overlap
overlap_frames = 0 # from which frame the model starts prediction
else:
# Subsequent requests: reuse `overlap_frames` poses from the most
# recent completed request.
overlap_frames = self.model.inference_overlap_frames
assert overlap_frames < self.min_frames_per_request()
w2c = np.concatenate([
self.pose_history_w2c[-1][-overlap_frames:, ...],
w2c[:-overlap_frames, ...]
], axis=0)
intrinsics = np.concatenate([
self.intrinsics_history[-1][-overlap_frames:, ...],
intrinsics[:-overlap_frames, ...]
], axis=0)
self.pose_history_w2c.append(w2c)
self.intrinsics_history.append(intrinsics)
# Run inference given the cameras
inference_results = self.model.inference_on_cameras(
w2c,
intrinsics,
fps=req.framerate,
overlap_frames=overlap_frames,
return_estimated_depths=req.return_depths,
video_save_quality=req.video_encoding_quality,
save_buffer=req.show_cache_renderings,
)
if isinstance(inference_results, dict):
pred_no_overlap = inference_results['video_no_overlap']
predicted_depth = inference_results['predicted_depth']
video_save_path = inference_results.get('video_save_path')
else:
# Assume tuple or list
_, _, _, pred_no_overlap, predicted_depth = inference_results
video_save_path = None
# Instead of synchronizing, which will block this thread and never yield to the
# asyncio event loop, we record a CUDA event and yield until it is reached
# by the GPU (= inference is complete).
cuda_event = torch.cuda.Event()
cuda_event.record()
while not cuda_event.query():
await asyncio.sleep(0.0005)
if self.fake_delay_ms > 0:
await asyncio.sleep(self.fake_delay_ms / 1000.0)
# Note: we remove the overlap frame(s), if any, before returning the result.
if isinstance(pred_no_overlap, torch.Tensor):
pred_no_overlap = pred_no_overlap.cpu().numpy()
if pred_no_overlap.ndim == 5:
assert pred_no_overlap.shape[0] == 1, pred_no_overlap.shape
pred_no_overlap = pred_no_overlap.squeeze()
n_frames = pred_no_overlap.shape[0]
# Reorder [n_frames, channels, height, width] to [n_frames, height, width, channels]
images = pred_no_overlap.transpose(0, 2, 3, 1)
if req.return_depths:
if isinstance(predicted_depth, torch.Tensor):
predicted_depth = predicted_depth.cpu().numpy()
# Desired shape: n_frames, height, width
if predicted_depth.ndim == 4:
assert predicted_depth.shape[1] == 1, predicted_depth.shape
predicted_depth = predicted_depth[:, 0, ...]
depths = predicted_depth
else:
depths = None
# TODO: for dynamic scenes, get actual timestamps for each frame?
timestamps = np.zeros((n_frames,))
upper = (-overlap_frames) if (overlap_frames > 0) else None # For easier slicing
kwargs = {
'request_id': req.request_id,
'result_ids': [f"{req.request_id}__frame_{k}" for k in range(n_frames)],
'timestamps': timestamps,
'cameras_to_world': req.cameras_to_world[:upper, ...],
'focal_lengths': req.focal_lengths[:upper, ...],
'principal_points': req.principal_points[:upper, ...],
'frame_count_without_padding': req.frame_count_without_padding,
'runtime_ms': 1000 * (time.time() - start_time),
}
if self.compress_inference_results and (video_save_path is not None):
video_bytes = open(video_save_path, "rb").read()
depths_compressed = compress_images(depths, CompressionFormat.NPZ, is_depth=True)
result = CompressedInferenceResult(
images=None,
depths=None,
resolutions=np.tile([[images.shape[2], images.shape[1]]], (images.shape[0], 1)),
images_compressed=[video_bytes],
images_format=CompressionFormat.MP4,
depths_compressed=depths_compressed, # May be None
depths_format=CompressionFormat.NPZ,
**kwargs
)
else:
result = InferenceResult(
images=images,
depths=depths,
**kwargs
)
return result
@override
def min_frames_per_request(self) -> int:
# Note this might not be strictly respected due to overlap frames,
# starting at the second inference batch.
return self.model.frames_per_batch
@override
def max_frames_per_request(self) -> int:
return self.model.frames_per_batch
def inference_resolution(self) -> list[tuple[int, int]] | None:
"""The supported inference resolutions (width, height),
or None if any resolution is supported."""
try:
r = self.model.cfg.train_data.shared_params.crop_size
except AttributeError:
r = (self.model.H, self.model.W)
return [(r[1], r[0]),]
@override
def inference_time_per_frame(self) -> int:
# TODO: actual mean inference time
return 4.0
@override
def requires_seeding(self) -> bool:
return True
@override
def metadata(self) -> dict:
return {
"model_name": "CosmosBaseModel",
"model_version": (1, 0, 0),
"aabb_min": self.aabb_min.tolist(),
"aabb_max": self.aabb_max.tolist(),
"min_frames_per_request": self.min_frames_per_request(),
"max_frames_per_request": self.max_frames_per_request(),
"inference_resolution": self.inference_resolution(),
"inference_time_per_frame": self.inference_time_per_frame(),
"default_framerate": self.default_framerate(),
"requires_seeding": self.requires_seeding(),
}
|