Spaces:
Build error
Build error
File size: 5,883 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file common_host.h
* @author Thomas Müller, NVIDIA
* @brief Shared functionality among multiple neural-graphics-primitives components.
*/
#pragma once
#include <neural-graphics-primitives/common.h>
#include <filesystem/path.h>
#include <tiny-cuda-nn/gpu_matrix.h>
#include <tiny-cuda-nn/gpu_memory.h>
#include <tinylogger/tinylogger.h>
#include <chrono>
#include <functional>
namespace ngp {
namespace fs = filesystem;
bool is_wsl();
fs::path discover_executable_dir();
fs::path discover_root_dir();
#ifdef _WIN32
std::string utf16_to_utf8(const std::wstring& utf16);
std::wstring utf8_to_utf16(const std::string& utf16);
std::wstring native_string(const fs::path& path);
#else
std::string native_string(const fs::path& path);
#endif
bool ends_with(const std::string& str, const std::string& ending);
bool ends_with_case_insensitive(const std::string& str, const std::string& ending);
ETestbedMode mode_from_scene(const std::string& scene);
ETestbedMode mode_from_string(const std::string& str);
std::string to_string(ETestbedMode);
inline std::string replace_all(std::string str, const std::string& a, const std::string& b) {
std::string::size_type n = 0;
while ((n = str.find(a, n)) != std::string::npos) {
str.replace(n, a.length(), b);
n += b.length();
}
return str;
}
template <typename T> T snap_to_nearest(T val, const std::vector<T>& candidates) {
T best_dist = std::numeric_limits<T>::max();
T result = candidates.empty() ? val : candidates[0];
for (T c : candidates) {
T dist = abs(val - c);
if (dist < best_dist) {
best_dist = dist;
result = c;
}
}
return result;
}
enum class EEmaType {
Time,
Step,
};
template <typename T> class Ema {
public:
Ema(EEmaType type, float half_life) :
m_type{type}, m_decay{std::pow(0.5f, 1.0f / max(half_life, 0.000001f))}, m_creation_time{std::chrono::steady_clock::now()} {}
int64_t current_progress() {
if (m_type == EEmaType::Time) {
auto now = std::chrono::steady_clock::now();
return std::chrono::duration_cast<std::chrono::milliseconds>(now - m_creation_time).count();
} else {
return m_last_progress + 1;
}
}
void update(const T& val) {
int64_t cur = current_progress();
int64_t elapsed = cur - m_last_progress;
m_last_progress = cur;
float decay = std::pow(m_decay, elapsed);
m_val = val;
m_ema_val = decay * m_ema_val + (1.0f - decay) * val;
}
void set(const T& val) {
m_last_progress = current_progress();
m_val = m_ema_val = val;
}
T val() const { return m_val; }
T ema_val() const { return m_ema_val; }
private:
T m_val = 0.0f;
T m_ema_val = 0.0f;
EEmaType m_type;
float m_decay;
int64_t m_last_progress = 0;
std::chrono::time_point<std::chrono::steady_clock> m_creation_time;
};
uint8_t* load_stbi(const fs::path& path, int* width, int* height, int* comp, int req_comp);
float* load_stbi_float(const fs::path& path, int* width, int* height, int* comp, int req_comp);
uint16_t* load_stbi_16(const fs::path& path, int* width, int* height, int* comp, int req_comp);
bool is_hdr_stbi(const fs::path& path);
int write_stbi(const fs::path& path, int width, int height, int comp, const uint8_t* pixels, int quality = 100);
FILE* native_fopen(const fs::path& path, const char* mode);
GPUMemory<float> load_exr_gpu(const fs::path& path, int* width, int* height);
GPUMemory<float> load_stbi_gpu(const fs::path& path, int* width, int* height);
template <typename T> class Buffer2D {
public:
Buffer2D() = default;
Buffer2D(const ivec2& resolution) { resize(resolution); }
T* data() const { return m_data.data(); }
size_t bytes() const { return m_data.bytes(); }
void resize(const ivec2& resolution) {
m_data.resize(product(resolution));
m_resolution = resolution;
}
const ivec2& resolution() const { return m_resolution; }
Buffer2DView<T> view() const {
// Row major for now.
return {data(), m_resolution};
}
Buffer2DView<const T> const_view() const {
// Row major for now.
return {data(), m_resolution};
}
private:
GPUMemory<T> m_data;
ivec2 m_resolution;
};
template <typename T> struct GPUImage {
GPUImage() : image{}, padding{0} {}
GPUImage(ivec2 resolution, uint32_t padding, cudaStream_t stream) :
image{resolution.y + padding * 2, resolution.x + padding * 2, stream}, padding{padding} {}
GPUImage(ivec2 resolution, cudaStream_t stream) : GPUImage(resolution, 0, stream) {}
MatrixView<T> view() const { return image.slice(padding, image.m() - 2 * padding, padding, image.n() - 2 * padding).view(); }
T* data() const { return image.data(); }
size_t n_elements_padded() const { return image.n_elements(); }
size_t n_elements() const { return product(resolution()); }
ivec2 resolution_padded() const { return {(int)image.n(), (int)image.m()}; }
ivec2 resolution() const { return {(int)(image.n() - 2 * padding), (int)(image.m() - 2 * padding)}; }
explicit operator bool() const { return image.data() != nullptr; }
GPUMatrix<T, RM> image;
uint32_t padding;
};
struct BoundingBox;
struct Triangle;
std::ostream& operator<<(std::ostream& os, const BoundingBox& triangle);
std::ostream& operator<<(std::ostream& os, const Triangle& triangle);
} // namespace ngp
|