Spaces:
Build error
Build error
File size: 10,249 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file random_val.cuh
* @author Thomas Müller & Alex Evans, NVIDIA
*/
#pragma once
#include <neural-graphics-primitives/common.h>
#include <pcg32/pcg32.h>
namespace ngp {
using default_rng_t = pcg32;
inline constexpr NGP_HOST_DEVICE float PI() { return 3.14159265358979323846f; }
template <typename RNG>
inline __host__ __device__ float random_val(RNG& rng) {
return rng.next_float();
}
template <typename RNG>
inline __host__ __device__ uint32_t random_uint(RNG& rng) {
return rng.next_uint();
}
template <typename RNG>
inline __host__ __device__ vec2 random_val_2d(RNG& rng) {
return {rng.next_float(), rng.next_float()};
}
inline __host__ __device__ vec3 cylindrical_to_dir(const vec2& p) {
const float cos_theta = -2.0f * p.x + 1.0f;
const float phi = 2.0f * PI() * (p.y - 0.5f);
const float sin_theta = sqrtf(fmaxf(1.0f - cos_theta * cos_theta, 0.0f));
float sin_phi, cos_phi;
sincosf(phi, &sin_phi, &cos_phi);
return {sin_theta * cos_phi, sin_theta * sin_phi, cos_theta};
}
inline __host__ __device__ vec2 dir_to_cylindrical(const vec3& d) {
const float cos_theta = fminf(fmaxf(-d.z, -1.0f), 1.0f);
float phi = atan2(d.y, d.x);
return {(cos_theta + 1.0f) / 2.0f, (phi / (2.0f * PI())) + 0.5f};
}
inline __host__ __device__ vec2 dir_to_spherical(const vec3& d) {
const float cos_theta = fminf(fmaxf(d.z, -1.0f), 1.0f);
const float theta = acosf(cos_theta);
float phi = atan2(d.y, d.x);
return {theta, phi};
}
inline __host__ __device__ vec2 dir_to_spherical_unorm(const vec3& d) {
vec2 spherical = dir_to_spherical(d);
return {spherical.x / PI(), (spherical.y / (2.0f * PI()) + 0.5f)};
}
template <typename RNG>
inline __host__ __device__ vec3 random_dir(RNG& rng) {
return cylindrical_to_dir(random_val_2d(rng));
}
inline __host__ __device__ float fractf(float x) {
return x - floorf(x);
}
template <uint32_t N_DIRS>
__device__ __host__ vec3 fibonacci_dir(uint32_t i, const vec2& offset) {
// Fibonacci lattice with offset
float epsilon;
if (N_DIRS >= 11000) {
epsilon = 27;
} else if (N_DIRS >= 890) {
epsilon = 10;
} else if (N_DIRS >= 177) {
epsilon = 3.33;
} else if (N_DIRS >= 24) {
epsilon = 1.33;
} else {
epsilon = 0.33;
}
static constexpr float GOLDEN_RATIO = 1.6180339887498948482045868343656f;
return cylindrical_to_dir(vec2{fractf((i+epsilon) / (N_DIRS-1+2*epsilon) + offset.x), fractf(i / GOLDEN_RATIO + offset.y)});
}
template <typename RNG>
inline __host__ __device__ vec2 random_uniform_disc(RNG& rng) {
vec2 sample = random_val_2d(rng);
float r = sqrtf(sample.x);
float sin_phi, cos_phi;
sincosf(2.0f * PI() * sample.y, &sin_phi, &cos_phi);
return vec2{ r * sin_phi, r * cos_phi };
}
inline __host__ __device__ vec2 square2disk_shirley(const vec2& square) {
float phi, r;
float a = square.x;
float b = square.y;
if (a*a > b*b) { // use squares instead of absolute values
r = a;
phi = (PI()/4.0f) * (b/a);
} else {
r = b;
phi = (PI()/2.0f) - (PI()/4.0f) * (a/b);
}
float sin_phi, cos_phi;
sincosf(phi, &sin_phi, &cos_phi);
return {r*cos_phi, r*sin_phi};
}
inline __host__ __device__ __device__ vec3 cosine_hemisphere(const vec2& u) {
// Uniformly sample disk
const float r = sqrtf(u.x);
const float phi = 2.0f * PI() * u.y;
vec3 p;
p.x = r * cosf(phi);
p.y = r * sinf(phi);
// Project up to hemisphere
p.z = sqrtf(fmaxf(0.0f, 1.0f - p.x*p.x - p.y*p.y));
return p;
}
template <typename RNG>
inline __host__ __device__ vec3 random_dir_cosine(RNG& rng) {
return cosine_hemisphere(random_val_2d(rng));
}
template <typename RNG>
inline __host__ __device__ vec3 random_val_3d(RNG& rng) {
return {rng.next_float(), rng.next_float(), rng.next_float()};
}
template <typename RNG>
inline __host__ __device__ vec4 random_val_4d(RNG& rng) {
return {rng.next_float(), rng.next_float(), rng.next_float(), rng.next_float()};
}
// The below code has been adapted from Burley [2019] https://www.jcgt.org/published/0009/04/01/paper.pdf
inline __host__ __device__ uint32_t sobol(uint32_t index, uint32_t dim) {
static constexpr uint32_t directions[5][32] = {
0x80000000, 0x40000000, 0x20000000, 0x10000000,
0x08000000, 0x04000000, 0x02000000, 0x01000000,
0x00800000, 0x00400000, 0x00200000, 0x00100000,
0x00080000, 0x00040000, 0x00020000, 0x00010000,
0x00008000, 0x00004000, 0x00002000, 0x00001000,
0x00000800, 0x00000400, 0x00000200, 0x00000100,
0x00000080, 0x00000040, 0x00000020, 0x00000010,
0x00000008, 0x00000004, 0x00000002, 0x00000001,
0x80000000, 0xc0000000, 0xa0000000, 0xf0000000,
0x88000000, 0xcc000000, 0xaa000000, 0xff000000,
0x80800000, 0xc0c00000, 0xa0a00000, 0xf0f00000,
0x88880000, 0xcccc0000, 0xaaaa0000, 0xffff0000,
0x80008000, 0xc000c000, 0xa000a000, 0xf000f000,
0x88008800, 0xcc00cc00, 0xaa00aa00, 0xff00ff00,
0x80808080, 0xc0c0c0c0, 0xa0a0a0a0, 0xf0f0f0f0,
0x88888888, 0xcccccccc, 0xaaaaaaaa, 0xffffffff,
0x80000000, 0xc0000000, 0x60000000, 0x90000000,
0xe8000000, 0x5c000000, 0x8e000000, 0xc5000000,
0x68800000, 0x9cc00000, 0xee600000, 0x55900000,
0x80680000, 0xc09c0000, 0x60ee0000, 0x90550000,
0xe8808000, 0x5cc0c000, 0x8e606000, 0xc5909000,
0x6868e800, 0x9c9c5c00, 0xeeee8e00, 0x5555c500,
0x8000e880, 0xc0005cc0, 0x60008e60, 0x9000c590,
0xe8006868, 0x5c009c9c, 0x8e00eeee, 0xc5005555,
0x80000000, 0xc0000000, 0x20000000, 0x50000000,
0xf8000000, 0x74000000, 0xa2000000, 0x93000000,
0xd8800000, 0x25400000, 0x59e00000, 0xe6d00000,
0x78080000, 0xb40c0000, 0x82020000, 0xc3050000,
0x208f8000, 0x51474000, 0xfbea2000, 0x75d93000,
0xa0858800, 0x914e5400, 0xdbe79e00, 0x25db6d00,
0x58800080, 0xe54000c0, 0x79e00020, 0xb6d00050,
0x800800f8, 0xc00c0074, 0x200200a2, 0x50050093,
0x80000000, 0x40000000, 0x20000000, 0xb0000000,
0xf8000000, 0xdc000000, 0x7a000000, 0x9d000000,
0x5a800000, 0x2fc00000, 0xa1600000, 0xf0b00000,
0xda880000, 0x6fc40000, 0x81620000, 0x40bb0000,
0x22878000, 0xb3c9c000, 0xfb65a000, 0xddb2d000,
0x78022800, 0x9c0b3c00, 0x5a0fb600, 0x2d0ddb00,
0xa2878080, 0xf3c9c040, 0xdb65a020, 0x6db2d0b0,
0x800228f8, 0x400b3cdc, 0x200fb67a, 0xb00ddb9d,
};
uint32_t X = 0;
NGP_PRAGMA_UNROLL
for (uint32_t bit = 0; bit < 32; bit++) {
uint32_t mask = (index >> bit) & 1;
X ^= mask * directions[dim][bit];
}
return X;
}
inline __host__ __device__ uvec2 sobol2d(uint32_t index) {
return {sobol(index, 0), sobol(index, 1)};
}
inline __host__ __device__ uvec4 sobol4d(uint32_t index) {
return {sobol(index, 0), sobol(index, 1), sobol(index, 2), sobol(index, 3)};
}
inline __host__ __device__ uint32_t hash_combine(uint32_t seed, uint32_t v) {
return seed ^ (v + (seed << 6) + (seed >> 2));
}
inline __host__ __device__ uint32_t reverse_bits(uint32_t x) {
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
return ((x >> 16) | (x << 16));
}
inline __host__ __device__ uint32_t laine_karras_permutation(uint32_t x, uint32_t seed) {
x += seed;
x ^= x * 0x6c50b47cu;
x ^= x * 0xb82f1e52u;
x ^= x * 0xc7afe638u;
x ^= x * 0x8d22f6e6u;
return x;
}
inline __host__ __device__ uint32_t nested_uniform_scramble_base2(uint32_t x, uint32_t seed) {
x = reverse_bits(x);
x = laine_karras_permutation(x, seed);
x = reverse_bits(x);
return x;
}
inline __host__ __device__ uvec4 shuffled_scrambled_sobol4d(uint32_t index, uint32_t seed) {
index = nested_uniform_scramble_base2(index, seed);
auto X = sobol4d(index);
for (uint32_t i = 0; i < 4; i++) {
X[i] = nested_uniform_scramble_base2(X[i], hash_combine(seed, i));
}
return X;
}
inline __host__ __device__ uvec2 shuffled_scrambled_sobol2d(uint32_t index, uint32_t seed) {
index = nested_uniform_scramble_base2(index, seed);
auto X = sobol2d(index);
for (uint32_t i = 0; i < 2; ++i) {
X[i] = nested_uniform_scramble_base2(X[i], hash_combine(seed, i));
}
return X;
}
inline __host__ __device__ vec4 ld_random_val_4d(uint32_t index, uint32_t seed) {
constexpr float S = float(1.0/(1ull<<32));
uvec4 x = shuffled_scrambled_sobol4d(index, seed);
return {(float)x.x * S, (float)x.y * S, (float)x.z * S, (float)x.w * S};
}
inline __host__ __device__ vec2 ld_random_val_2d(uint32_t index, uint32_t seed) {
constexpr float S = float(1.0/(1ull<<32));
uvec2 x = shuffled_scrambled_sobol2d(index, seed);
return {(float)x.x * S, (float)x.y * S};
}
inline __host__ __device__ float ld_random_val(uint32_t index, uint32_t seed, uint32_t dim = 0) {
constexpr float S = float(1.0/(1ull<<32));
index = nested_uniform_scramble_base2(index, seed);
return (float)nested_uniform_scramble_base2(sobol(index, dim), hash_combine(seed, dim)) * S;
}
template <uint32_t base>
__host__ __device__ float halton(size_t idx) {
float f = 1;
float result = 0;
while (idx > 0) {
f /= base;
result += f * (idx % base);
idx /= base;
}
return result;
}
inline __host__ __device__ vec2 halton23(size_t idx) {
return {halton<2>(idx), halton<3>(idx)};
}
// Halton
// inline __host__ __device__ vec2 ld_random_pixel_offset(const uint32_t spp) {
// vec2 offset = vec2(0.5f) - halton23(0) + halton23(spp);
// offset.x = fractf(offset.x);
// offset.y = fractf(offset.y);
// return offset;
// }
// Scrambled Sobol
inline __host__ __device__ vec2 ld_random_pixel_offset(const uint32_t spp) {
vec2 offset = vec2(0.5f) - ld_random_val_2d(0, 0xdeadbeef) + ld_random_val_2d(spp, 0xdeadbeef);
offset.x = fractf(offset.x);
offset.y = fractf(offset.y);
return offset;
}
}
|