Spaces:
Build error
Build error
File size: 12,175 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file common.h
* @author Thomas Müller and Nikolaus Binder, NVIDIA
* @brief Common utilities that are needed by pretty much every component of this framework.
*/
#pragma once
#if defined(_WIN32) && !defined(NOMINMAX)
# define NOMINMAX
#endif
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <type_traits>
#if defined(__CUDACC__)
# include <cuda_fp16.h>
#endif
//////////////////////////////////////
// CUDA ERROR HANDLING (EXCEPTIONS) //
//////////////////////////////////////
#define STRINGIFY(x) #x
#define STR(x) STRINGIFY(x)
#define FILE_LINE __FILE__ ":" STR(__LINE__)
#if defined(__CUDA_ARCH__)
#define TCNN_PRAGMA_UNROLL _Pragma("unroll")
#define TCNN_PRAGMA_NO_UNROLL _Pragma("unroll 1")
#else
#define TCNN_PRAGMA_UNROLL
#define TCNN_PRAGMA_NO_UNROLL
#endif
#ifdef __CUDACC__
# ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
# pragma nv_diag_suppress = unsigned_compare_with_zero
# else
# pragma diag_suppress = unsigned_compare_with_zero
# endif
#endif
#if defined(__CUDACC__) || (defined(__clang__) && defined(__CUDA__))
#define TCNN_HOST_DEVICE __host__ __device__
#define TCNN_DEVICE __device__
#define TCNN_HOST __host__
#else
#define TCNN_HOST_DEVICE
#define TCNN_DEVICE
#define TCNN_HOST
#endif
#ifndef TCNN_MIN_GPU_ARCH
#warning TCNN_MIN_GPU_ARCH was not defined. Using default value 75.
#define TCNN_MIN_GPU_ARCH 75
#endif
#include <tiny-cuda-nn/vec.h>
#if defined(__CUDA_ARCH__)
static_assert(__CUDA_ARCH__ >= TCNN_MIN_GPU_ARCH * 10, "MIN_GPU_ARCH=" STR(TCNN_MIN_GPU_ARCH) "0 must bound __CUDA_ARCH__=" STR(__CUDA_ARCH__) " from below, but doesn't.");
#endif
namespace tcnn {
static constexpr uint32_t MIN_GPU_ARCH = TCNN_MIN_GPU_ARCH;
// When TCNN managed its model parameters, they are always aligned,
// which yields performance benefits in practice. However, parameters
// supplied by PyTorch are not necessarily aligned. The following
// variable controls whether TCNN must deal with unaligned data.
#if defined(TCNN_PARAMS_UNALIGNED)
static constexpr bool PARAMS_ALIGNED = false;
#else
static constexpr bool PARAMS_ALIGNED = true;
#endif
#define TCNN_HALF_PRECISION (!(TCNN_MIN_GPU_ARCH == 61 || TCNN_MIN_GPU_ARCH <= 52))
// TCNN has the following behavior depending on GPU arch.
// Refer to the first row of the table at the following URL for information about
// when to pick fp16 versus fp32 precision for maximum performance.
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#arithmetic-instructions__throughput-native-arithmetic-instructions
//
// GPU Arch | FullyFusedMLP supported | CUTLASS SmArch supported | Precision
// ----------|-------------------------|--------------------------|--------------------------
// 80-90 | yes | 80 | __half
// 75 | yes | 75 | __half
// 70 | no | 70 | __half
// 53-60, 62 | no | 70 | __half (no tensor cores)
// <=52, 61 | no | 70 | float (no tensor cores)
#if defined(__CUDACC__)
# if TCNN_HALF_PRECISION
using network_precision_t = __half;
# else
using network_precision_t = float;
# endif
// Optionally: set the precision to `float` to disable tensor cores and debug potential
// problems with mixed-precision training.
// using network_precision_t = float;
#endif
enum class Activation {
ReLU,
LeakyReLU,
Exponential,
Sine,
Sigmoid,
Squareplus,
Softplus,
Tanh,
None,
};
enum class GridType {
Hash,
Dense,
Tiled,
};
enum class HashType {
Prime,
CoherentPrime,
ReversedPrime,
Rng,
BaseConvert,
};
enum class InterpolationType {
Nearest,
Linear,
Smoothstep,
};
enum class MatrixLayout {
RowMajor = 0,
SoA = 0, // For data matrices TCNN's convention is RowMajor == SoA (struct of arrays)
ColumnMajor = 1,
AoS = 1,
};
static constexpr MatrixLayout RM = MatrixLayout::RowMajor;
static constexpr MatrixLayout SoA = MatrixLayout::SoA;
static constexpr MatrixLayout CM = MatrixLayout::ColumnMajor;
static constexpr MatrixLayout AoS = MatrixLayout::AoS;
enum class ReductionType {
Concatenation,
Sum,
Product,
};
//////////////////
// Misc helpers //
//////////////////
inline constexpr TCNN_HOST_DEVICE float PI() { return 3.14159265358979323846f; }
template <typename T>
TCNN_HOST_DEVICE void host_device_swap(T& a, T& b) {
T c(a); a=b; b=c;
}
template <typename T>
TCNN_HOST_DEVICE T gcd(T a, T b) {
while (a != 0) {
b %= a;
host_device_swap(a, b);
}
return b;
}
template <typename T>
TCNN_HOST_DEVICE T lcm(T a, T b) {
T tmp = gcd(a, b);
return tmp ? (a / tmp) * b : 0;
}
template <typename T>
TCNN_HOST_DEVICE T div_round_up(T val, T divisor) {
return (val + divisor - 1) / divisor;
}
template <typename T>
TCNN_HOST_DEVICE T next_multiple(T val, T divisor) {
return div_round_up(val, divisor) * divisor;
}
template <typename T>
TCNN_HOST_DEVICE T previous_multiple(T val, T divisor) {
return (val / divisor) * divisor;
}
template <typename T>
constexpr TCNN_HOST_DEVICE bool is_pot(T val) {
return (val & (val - 1)) == 0;
}
inline constexpr TCNN_HOST_DEVICE uint32_t next_pot(uint32_t v) {
--v;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return v+1;
}
template <typename T> constexpr TCNN_HOST_DEVICE float default_loss_scale();
template <> constexpr TCNN_HOST_DEVICE float default_loss_scale<float>() { return 1.0f; }
#ifdef __CUDACC__
template <> constexpr TCNN_HOST_DEVICE float default_loss_scale<__half>() { return 128.0f; }
#endif
constexpr uint32_t BATCH_SIZE_GRANULARITY = 256;
constexpr uint32_t N_THREADS_LINEAR = 128;
constexpr uint32_t WARP_SIZE = 32;
// Lower-case constants kept for backward compatibility with user code.
constexpr uint32_t batch_size_granularity = BATCH_SIZE_GRANULARITY;
constexpr uint32_t n_threads_linear = N_THREADS_LINEAR;
template <typename T>
constexpr TCNN_HOST_DEVICE uint32_t n_blocks_linear(T n_elements, uint32_t n_threads = N_THREADS_LINEAR) {
return (uint32_t)div_round_up(n_elements, (T)n_threads);
}
template <typename T>
struct PitchedPtr {
TCNN_HOST_DEVICE PitchedPtr() : ptr{nullptr}, stride_in_bytes{sizeof(T)} {}
TCNN_HOST_DEVICE PitchedPtr(T* ptr, size_t stride_in_elements, size_t offset = 0, size_t extra_stride_bytes = 0) : ptr{ptr + offset}, stride_in_bytes{stride_in_elements * sizeof(T) + extra_stride_bytes} {}
template <typename U>
TCNN_HOST_DEVICE explicit PitchedPtr(PitchedPtr<U> other) : ptr{(T*)other.ptr}, stride_in_bytes{other.stride_in_bytes} {}
TCNN_HOST_DEVICE T* operator()(uint32_t y) const {
return (T*)((const char*)ptr + y * stride_in_bytes);
}
TCNN_HOST_DEVICE void operator+=(uint32_t y) {
ptr = (T*)((const char*)ptr + y * stride_in_bytes);
}
TCNN_HOST_DEVICE void operator-=(uint32_t y) {
ptr = (T*)((const char*)ptr - y * stride_in_bytes);
}
TCNN_HOST_DEVICE explicit operator bool() const {
return ptr;
}
T* ptr;
size_t stride_in_bytes;
};
template <typename T, typename STRIDE_T=uint32_t>
struct MatrixView {
TCNN_HOST_DEVICE MatrixView() : data{nullptr}, stride_i{0}, stride_j{0} {}
TCNN_HOST_DEVICE MatrixView(T* data, STRIDE_T stride_i, STRIDE_T stride_j) : data{data}, stride_i{stride_i}, stride_j{stride_j} {}
TCNN_HOST_DEVICE MatrixView(const MatrixView<std::remove_const_t<T>>& other) : data{other.data}, stride_i{other.stride_i}, stride_j{other.stride_j} {}
using signed_index_t = std::make_signed_t<STRIDE_T>;
using unsigned_index_t = std::make_unsigned_t<STRIDE_T>;
// Signed indexing
TCNN_HOST_DEVICE T& operator()(signed_index_t i, signed_index_t j = 0) const {
return data[i * (std::ptrdiff_t)stride_i + j * (std::ptrdiff_t)stride_j];
}
TCNN_HOST_DEVICE void advance(signed_index_t m, signed_index_t n) {
data += m * (std::ptrdiff_t)stride_i + n * (std::ptrdiff_t)stride_j;
}
TCNN_HOST_DEVICE void advance_rows(signed_index_t m) {
advance(m, 0);
}
TCNN_HOST_DEVICE void advance_cols(signed_index_t n) {
advance(0, n);
}
// Unsigned indexing
TCNN_HOST_DEVICE T& operator()(unsigned_index_t i, unsigned_index_t j = 0) const {
return data[i * (size_t)stride_i + j * (size_t)stride_j];
}
TCNN_HOST_DEVICE void advance(unsigned_index_t m, unsigned_index_t n) {
data += m * (size_t)stride_i + n * (size_t)stride_j;
}
TCNN_HOST_DEVICE void advance_rows(unsigned_index_t m) {
advance(m, (unsigned_index_t)0);
}
TCNN_HOST_DEVICE void advance_cols(unsigned_index_t n) {
advance((unsigned_index_t)0, n);
}
template <uint32_t N>
TCNN_HOST_DEVICE tvec<std::remove_const_t<T>, N> row(unsigned_index_t m) const {
tvec<std::remove_const_t<T>, N> result;
TCNN_PRAGMA_UNROLL
for (unsigned_index_t i = 0; i < N; ++i) {
result[i] = (*this)(m, i);
}
return result;
}
template <uint32_t N>
TCNN_HOST_DEVICE tvec<std::remove_const_t<T>, N> col(unsigned_index_t n) const {
tvec<std::remove_const_t<T>, N> result;
TCNN_PRAGMA_UNROLL
for (unsigned_index_t i = 0; i < N; ++i) {
result[i] = (*this)(i, n);
}
return result;
}
template <typename U, uint32_t N, size_t A>
TCNN_HOST_DEVICE void set_row(unsigned_index_t m, const tvec<U, N, A>& val) {
TCNN_PRAGMA_UNROLL
for (unsigned_index_t i = 0; i < N; ++i) {
(*this)(m, i) = val[i];
}
}
template <typename U, uint32_t N, size_t A>
TCNN_HOST_DEVICE void set_col(unsigned_index_t n, const tvec<U, N, A>& val) {
TCNN_PRAGMA_UNROLL
for (unsigned_index_t i = 0; i < N; ++i) {
(*this)(i, n) = val[i];
}
}
TCNN_HOST_DEVICE explicit operator bool() const {
return data;
}
T* data;
STRIDE_T stride_i, stride_j;
};
template <typename T>
struct Interval {
// Inclusive start, exclusive end
T start, end;
TCNN_HOST_DEVICE bool operator<(const Interval& other) const {
// This operator is used to sort non-overlapping intervals. Since intervals
// may be empty, the second half of the following expression is required to
// resolve ambiguity when `end` of adjacent empty intervals is equal.
return end < other.end || (end == other.end && start < other.start);
}
TCNN_HOST_DEVICE bool overlaps(const Interval& other) const {
return !intersect(other).empty();
}
TCNN_HOST_DEVICE Interval intersect(const Interval& other) const {
return {std::max(start, other.start), std::min(end, other.end)};
}
TCNN_HOST_DEVICE bool valid() const {
return end >= start;
}
TCNN_HOST_DEVICE bool empty() const {
return end <= start;
}
TCNN_HOST_DEVICE T size() const {
return end - start;
}
};
struct Ray {
vec3 o;
vec3 d;
TCNN_HOST_DEVICE vec3 operator()(float t) const {
return o + t * d;
}
TCNN_HOST_DEVICE void advance(float t) {
o += d * t;
}
TCNN_HOST_DEVICE float distance_to(const vec3& p) const {
vec3 nearest = p - o;
nearest -= d * dot(nearest, d) / length2(d);
return length(nearest);
}
TCNN_HOST_DEVICE bool is_valid() const {
return d != vec3(0.0f);
}
static TCNN_HOST_DEVICE Ray invalid() {
return {{0.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 0.0f}};
}
};
// Helpful data structure to represent ray-object intersections
template <typename T>
struct PayloadAndIdx {
T t;
int64_t idx;
// Sort in descending order
TCNN_HOST_DEVICE bool operator<(const PayloadAndIdx<T>& other) {
return t < other.t;
}
};
using DistAndIdx = PayloadAndIdx<float>;
using IntervalAndIdx = PayloadAndIdx<Interval<float>>;
}
|