Spaces:
Build error
Build error
File size: 75,488 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 |
/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file common_device.h
* @author Thomas Müller & Nikolaus Binder, NVIDIA
* @brief Implementation of various miscellaneous CUDA kernels and
device functions.
*/
#pragma once
#include <tiny-cuda-nn/common.h>
#include <pcg32/pcg32.h>
namespace tcnn {
__forceinline__ __device__ unsigned lane_id() {
unsigned ret;
asm volatile("mov.u32 %0, %laneid;" : "=r"(ret));
return ret;
}
static constexpr float SQRT2 = 1.41421356237309504880f;
__host__ __device__ inline float logistic(const float x) {
return 1.0f / (1.0f + expf(-x));
}
__host__ __device__ inline float logit(const float x) {
return -logf(1.0f / (fminf(fmaxf(x, 1e-9f), 1.0f - 1e-9f)) - 1.0f);
}
template <uint32_t N>
__host__ __device__ inline void softmax(float vals[N]) {
float total = 0;
TCNN_PRAGMA_UNROLL
for (uint32_t i = 0; i < N; ++i) {
vals[i] = expf(vals[i]);
total += vals[i];
}
const float inv_total = 1.0f / total;
TCNN_PRAGMA_UNROLL
for (uint32_t i = 0; i < N; ++i) {
vals[i] *= inv_total;
}
}
template <uint32_t N>
__host__ __device__ inline float softmax(const float vals[N], uint32_t idx) {
float total = 0;
TCNN_PRAGMA_UNROLL
for (uint32_t i = 0; i < N; ++i) {
total += expf(vals[i]);
}
return expf(vals[idx]) / total;
}
template <typename V>
struct VectorFragment {
static const uint32_t num_elements = V::size();
V x;
};
template <typename T, uint32_t N, size_t A = sizeof(T)>
using vector_fragment_t = VectorFragment<tvec<T, N, A>>;
template <typename T>
__host__ __device__ T relu(T val) {
return (T)max((float)val, 0.0f);
}
template <>
inline __host__ __device__ half relu(half val) {
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
return __hmax(val, (half)0.0f);
#else
return (half)relu<float>((float)val);
#endif
}
static constexpr float K_ACT = 10.0f;
template <typename T, typename fragment_t, Activation activation, std::enable_if_t<activation == Activation::None, int> = 0>
__host__ __device__ void warp_activation(const fragment_t& frag, fragment_t& result) {
result = frag;
}
template <typename T, typename fragment_t, Activation activation, std::enable_if_t<activation == Activation::ReLU, int> = 0>
__host__ __device__ void warp_activation(const fragment_t& frag, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = relu((T)frag.x[t]);
}
}
template <typename T, typename fragment_t, Activation activation, std::enable_if_t<activation == Activation::LeakyReLU, int> = 0>
__host__ __device__ void warp_activation(const fragment_t& frag, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = frag.x[t] * (T)((T)frag.x[t] > (T)0.0f ? 1.0f : 0.01f);
}
}
template <typename T, typename fragment_t, Activation activation, std::enable_if_t<activation == Activation::Exponential, int> = 0>
__host__ __device__ void warp_activation(const fragment_t& frag, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = (T)(expf((float)frag.x[t]));
}
}
template <typename T, typename fragment_t, Activation activation, std::enable_if_t<activation == Activation::Sine, int> = 0>
__host__ __device__ void warp_activation(const fragment_t& frag, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = (T)(sinf((float)frag.x[t]));
}
}
template <typename T, typename fragment_t, Activation activation, std::enable_if_t<activation == Activation::Sigmoid, int> = 0>
__host__ __device__ void warp_activation(const fragment_t& frag, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = (T)(logistic((float)frag.x[t]));
}
}
template <typename T, typename fragment_t, Activation activation, std::enable_if_t<activation == Activation::Squareplus, int> = 0>
__host__ __device__ void warp_activation(const fragment_t& frag, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
float x = (float)frag.x[t] * K_ACT;
result.x[t] = (T)(0.5f * (x + sqrtf(x * x + 4)) / K_ACT);
}
}
template <typename T, typename fragment_t, Activation activation, std::enable_if_t<activation == Activation::Softplus, int> = 0>
__host__ __device__ void warp_activation(const fragment_t& frag, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = (T)(logf(expf((float)frag.x[t] * K_ACT) + 1.0f) / K_ACT);
}
}
template <typename T, typename fragment_t, Activation activation, std::enable_if_t<activation == Activation::Tanh, int> = 0>
__host__ __device__ void warp_activation(const fragment_t& frag, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = (T)(tanhf((float)frag.x[t]));
}
}
template <typename T, typename fragment_t>
__host__ __device__ void warp_activation(Activation activation, const fragment_t& frag, fragment_t& result) {
switch (activation) {
case Activation::ReLU: warp_activation<T, fragment_t, Activation::ReLU>(frag, result); return;
case Activation::LeakyReLU: warp_activation<T, fragment_t, Activation::LeakyReLU>(frag, result); return;
case Activation::Exponential: warp_activation<T, fragment_t, Activation::Exponential>(frag, result); return;
case Activation::Sine: warp_activation<T, fragment_t, Activation::Sine>(frag, result); return;
case Activation::Sigmoid: warp_activation<T, fragment_t, Activation::Sigmoid>(frag, result); return;
case Activation::Squareplus: warp_activation<T, fragment_t, Activation::Squareplus>(frag, result); return;
case Activation::Softplus: warp_activation<T, fragment_t, Activation::Softplus>(frag, result); return;
case Activation::Tanh: warp_activation<T, fragment_t, Activation::Tanh>(frag, result); return;
case Activation::None: warp_activation<T, fragment_t, Activation::None>(frag, result); return;
default:
// Unsupported activation
// assert(false); // Commented out due to isolated strange side-effects on Windows
return;
}
}
template <typename T, typename fragment_t>
__host__ __device__ fragment_t warp_activation(Activation activation, const fragment_t& frag) {
fragment_t result;
warp_activation<T>(activation, frag, result);
return result;
}
template <Activation activation, typename T, uint32_t N, size_t A = sizeof(T)>
__host__ __device__ tvec<T, N, A> vec_activation(tvec<T, N, A>& v) {
using fragment_t = vector_fragment_t<T, N, A>;
warp_activation<T, fragment_t, activation>(*(fragment_t*)&v, *(fragment_t*)&v);
}
template <typename T, uint32_t N, size_t A = sizeof(T)>
__host__ __device__ tvec<T, N, A> vec_activation(Activation activation, const tvec<T, N, A>& v) {
auto result = warp_activation<T>(activation, vector_fragment_t<T, N, A>{v});
return result.x;
}
template <typename T>
__host__ __device__ T activation(Activation activation, T val) {
return vec_activation(activation, tvec<T, 1>{val})[0];
}
template <typename T, typename fragment_t, typename forward_fragment_t, Activation activation, std::enable_if_t<activation == Activation::None, int> = 0>
__host__ __device__ void warp_activation_backward_in(const fragment_t& frag, const forward_fragment_t& forward_frag_in, fragment_t& result) {
result = frag;
}
template <typename T, typename fragment_t, typename forward_fragment_t, Activation activation, std::enable_if_t<activation == Activation::ReLU, int> = 0>
__host__ __device__ void warp_activation_backward_in(const fragment_t& frag, const forward_fragment_t& forward_frag_in, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = frag.x[t] * (T)(forward_frag_in.x[t] > (T)0.0f);
}
}
template <typename T, typename fragment_t, typename forward_fragment_t, Activation activation, std::enable_if_t<activation == Activation::LeakyReLU, int> = 0>
__host__ __device__ void warp_activation_backward_in(const fragment_t& frag, const forward_fragment_t& forward_frag_in, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = frag.x[t] * (T)(forward_frag_in.x[t] > (T)0.0f ? 1.0f : 0.01f);
}
}
template <typename T, typename fragment_t, typename forward_fragment_t, Activation activation, std::enable_if_t<activation == Activation::Exponential, int> = 0>
__host__ __device__ void warp_activation_backward_in(const fragment_t& frag, const forward_fragment_t& forward_frag_in, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = frag.x[t] * (T)(expf(forward_frag_in.x[t]));
}
}
template <typename T, typename fragment_t, typename forward_fragment_t, Activation activation, std::enable_if_t<activation == Activation::Sine, int> = 0>
__host__ __device__ void warp_activation_backward_in(const fragment_t& frag, const forward_fragment_t& forward_frag_in, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = frag.x[t] * (T)(cosf(forward_frag_in.x[t]));
}
}
template <typename T, typename fragment_t, typename forward_fragment_t, Activation activation, std::enable_if_t<activation == Activation::Sigmoid, int> = 0>
__host__ __device__ void warp_activation_backward_in(const fragment_t& frag, const forward_fragment_t& forward_frag_in, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
float x = logistic(forward_frag_in.x[t]);
result.x[t] = frag.x[t] * (T)(x * (1.0f - x));
}
}
template <typename T, typename fragment_t, typename forward_fragment_t, Activation activation, std::enable_if_t<activation == Activation::Squareplus, int> = 0>
__host__ __device__ void warp_activation_backward_in(const fragment_t& frag, const forward_fragment_t& forward_frag_in, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
float x = (float)forward_frag_in.x[t] * K_ACT;
float y = 0.5f * (x + sqrtf(x * x + 4));
result.x[t] = frag.x[t] * (T)(y * y / (y * y + 1));
}
}
template <typename T, typename fragment_t, typename forward_fragment_t, Activation activation, std::enable_if_t<activation == Activation::Softplus, int> = 0>
__host__ __device__ void warp_activation_backward_in(const fragment_t& frag, const forward_fragment_t& forward_frag_in, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
float tmp = expf((float)forward_frag_in.x[t] * K_ACT);
result.x[t] = frag.x[t] * (T)(tmp / (tmp + 1));
}
}
template <typename T, typename fragment_t, typename forward_fragment_t, Activation activation, std::enable_if_t<activation == Activation::Tanh, int> = 0>
__host__ __device__ void warp_activation_backward_in(const fragment_t& frag, const forward_fragment_t& forward_frag_in, fragment_t& result) {
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
float x = tanhf(forward_frag_in.x[t]);
result.x[t] = frag.x[t] * (T)(1.0f - x * x);
}
}
template <typename T, typename fragment_t, typename forward_fragment_t>
__host__ __device__ void warp_activation_backward_in(Activation activation, const fragment_t& frag, const forward_fragment_t& forward_frag_in, fragment_t& result) {
switch (activation) {
case Activation::ReLU: warp_activation_backward_in<T, fragment_t, forward_fragment_t, Activation::ReLU>(frag, forward_frag_in, result); return;
case Activation::LeakyReLU: warp_activation_backward_in<T, fragment_t, forward_fragment_t, Activation::LeakyReLU>(frag, forward_frag_in, result); return;
case Activation::Exponential: warp_activation_backward_in<T, fragment_t, forward_fragment_t, Activation::Exponential>(frag, forward_frag_in, result); return;
case Activation::Sine: warp_activation_backward_in<T, fragment_t, forward_fragment_t, Activation::Sine>(frag, forward_frag_in, result); return;
case Activation::Sigmoid: warp_activation_backward_in<T, fragment_t, forward_fragment_t, Activation::Sigmoid>(frag, forward_frag_in, result); return;
case Activation::Squareplus: warp_activation_backward_in<T, fragment_t, forward_fragment_t, Activation::Squareplus>(frag, forward_frag_in, result); return;
case Activation::Softplus: warp_activation_backward_in<T, fragment_t, forward_fragment_t, Activation::Softplus>(frag, forward_frag_in, result); return;
case Activation::Tanh: warp_activation_backward_in<T, fragment_t, forward_fragment_t, Activation::Tanh>(frag, forward_frag_in, result); return;
case Activation::None: warp_activation_backward_in<T, fragment_t, forward_fragment_t, Activation::None>(frag, forward_frag_in, result); return;
default:
// Unsupported activation
// assert(false); // Commented out due to isolated strange side-effects on Windows
return;
}
}
template <typename T, typename fragment_t, typename forward_fragment_t>
__host__ __device__ fragment_t warp_activation_backward_in(Activation activation, const fragment_t& frag, const forward_fragment_t& forward_frag_in) {
fragment_t result;
warp_activation_backward_in<T>(activation, frag, forward_frag_in, result);
return result;
}
template <Activation activation, typename T, uint32_t N, size_t A = sizeof(T)>
__host__ __device__ tvec<T, N, A> vec_activation_backward_in(tvec<T, N, A>& v, const tvec<T, N, A>& forward_v_in) {
using fragment_t = vector_fragment_t<T, N, A>;
warp_activation_backward_in<T, fragment_t, fragment_t, activation>(*(fragment_t*)&v, *(fragment_t*)&forward_v_in, *(fragment_t*)&v);
}
template <typename T, uint32_t N, size_t A = sizeof(T)>
__host__ __device__ tvec<T, N, A> vec_activation_backward_in(Activation activation, const tvec<T, N, A>& v, const tvec<T, N, A>& forward_v_in) {
auto result = warp_activation_backward_in<T>(activation, vector_fragment_t<T, N, A>{v}, vector_fragment_t<T, N, A>{forward_v_in});
return result.x;
}
template <typename T>
__host__ __device__ T activation_backward_in(Activation activation, T val, T forward_val_in) {
return vec_activation_backward_in(activation, tvec<T, 1>{val}, tvec<T, 1>{forward_val_in})[0];
}
template <typename T, typename fragment_t, typename forward_fragment_t>
__host__ __device__ void warp_activation_backward(Activation activation, const fragment_t& frag, const forward_fragment_t& forward_frag, fragment_t& result) {
switch (activation) {
case Activation::ReLU:
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = frag.x[t] * (T)(forward_frag.x[t] > (T)0.0f);
}
return;
case Activation::LeakyReLU:
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = frag.x[t] * (T)(forward_frag.x[t] > (T)0.0f ? 1.0f : 0.01f);
}
return;
case Activation::Exponential:
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = frag.x[t] * forward_frag.x[t];
}
return;
case Activation::Sine:
// Sine requires stored pre-activations, which we don't have. We only
// write out the post-activations.
// assert(false); // Commented out due to isolated strange side-effects on Windows
return;
case Activation::Sigmoid:
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = frag.x[t] * (T)(forward_frag.x[t] * (T)(1.0f - (float)forward_frag.x[t]));
}
return;
case Activation::Squareplus:
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
float y = (float)forward_frag.x[t] * K_ACT;
result.x[t] = frag.x[t] * (T)(y * y / (y * y + 1));
}
return;
case Activation::Softplus:
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = frag.x[t] * (T)(1.0f - expf(-(float)forward_frag.x[t] * K_ACT));
}
return;
case Activation::Tanh:
TCNN_PRAGMA_UNROLL
for (int t=0; t < result.num_elements; t++) {
result.x[t] = frag.x[t] * (T)(1.0f - ((float)forward_frag.x[t] * (float)forward_frag.x[t]));
}
return;
case Activation::None: result = frag; return;
default:
// Unsupported activation
// assert(false); // Commented out due to isolated strange side-effects on Windows
return;
}
}
template <typename T, typename fragment_t, typename forward_fragment_t>
__host__ __device__ fragment_t warp_activation_backward(Activation activation, const fragment_t& frag, const forward_fragment_t& forward_frag) {
fragment_t result;
warp_activation_backward<T>(activation, frag, forward_frag, result);
return result;
}
template <typename T, uint32_t N, size_t A = sizeof(T)>
__host__ __device__ tvec<T, N, A> vec_activation_backward(Activation activation, const tvec<T, N, A>& v, const tvec<T, N, A>& forward_v) {
auto result = warp_activation_backward<T>(activation, vector_fragment_t<T, N, A>{v}, vector_fragment_t<T, N, A>{forward_v});
return result.x;
}
template <typename T>
__host__ __device__ T activation_backward(Activation activation, T val, T forward_val) {
return vec_activation_backward(activation, tvec<T, 1>{val}, tvec<T, 1>{forward_val})[0];
}
#define IQ_DEFAULT_STATE 0x853c49e6748fea9bULL
/// Based on https://www.iquilezles.org/www/articles/sfrand/sfrand.htm
struct iqrand {
/// Initialize the pseudorandom number generator with default seed
TCNN_HOST_DEVICE iqrand() : state((uint32_t)IQ_DEFAULT_STATE) {}
/// Initialize the pseudorandom number generator with the \ref seed() function
TCNN_HOST_DEVICE iqrand(uint32_t initstate) : state(initstate) {}
/// Generate a single precision floating point value on the interval [0, 1)
TCNN_HOST_DEVICE float next_float() {
union {
float fres;
unsigned int ires;
};
state *= 16807;
ires = ((((unsigned int)state)>>9 ) | 0x3f800000);
return fres - 1.0f;
}
uint32_t state; // RNG state. All values are possible.
};
using default_rng_t = pcg32;
__device__ inline float random_val(uint32_t seed, uint32_t idx) {
default_rng_t rng{seed};
rng.advance(idx);
return rng.next_float();
}
template <typename T, typename ARRAY_T>
__device__ void sh_enc(uint32_t degree, float x, float y, float z, ARRAY_T& data_out) {
// Let compiler figure out how to sequence/reorder these calculations w.r.t. branches
float xy=x*y, xz=x*z, yz=y*z, x2=x*x, y2=y*y, z2=z*z;
float x4=x2*x2, y4=y2*y2, z4=z2*z2;
float x6=x4*x2, y6=y4*y2, z6=z4*z2;
// SH polynomials generated using scripts/gen_sh.py based on the recurrence relations in appendix A1 of https://www.ppsloan.org/publications/StupidSH36.pdf
data_out(0) = (T)(0.28209479177387814f); // 1/(2*sqrt(pi))
if (degree <= 1) { return; }
data_out(1) = (T)(-0.48860251190291987f*y); // -sqrt(3)*y/(2*sqrt(pi))
data_out(2) = (T)(0.48860251190291987f*z); // sqrt(3)*z/(2*sqrt(pi))
data_out(3) = (T)(-0.48860251190291987f*x); // -sqrt(3)*x/(2*sqrt(pi))
if (degree <= 2) { return; }
data_out(4) = (T)(1.0925484305920792f*xy); // sqrt(15)*xy/(2*sqrt(pi))
data_out(5) = (T)(-1.0925484305920792f*yz); // -sqrt(15)*yz/(2*sqrt(pi))
data_out(6) = (T)(0.94617469575755997f*z2 - 0.31539156525251999f); // sqrt(5)*(3*z2 - 1)/(4*sqrt(pi))
data_out(7) = (T)(-1.0925484305920792f*xz); // -sqrt(15)*xz/(2*sqrt(pi))
data_out(8) = (T)(0.54627421529603959f*x2 - 0.54627421529603959f*y2); // sqrt(15)*(x2 - y2)/(4*sqrt(pi))
if (degree <= 3) { return; }
data_out(9) = (T)(0.59004358992664352f*y*(-3.0f*x2 + y2)); // sqrt(70)*y*(-3*x2 + y2)/(8*sqrt(pi))
data_out(10) = (T)(2.8906114426405538f*xy*z); // sqrt(105)*xy*z/(2*sqrt(pi))
data_out(11) = (T)(0.45704579946446572f*y*(1.0f - 5.0f*z2)); // sqrt(42)*y*(1 - 5*z2)/(8*sqrt(pi))
data_out(12) = (T)(0.3731763325901154f*z*(5.0f*z2 - 3.0f)); // sqrt(7)*z*(5*z2 - 3)/(4*sqrt(pi))
data_out(13) = (T)(0.45704579946446572f*x*(1.0f - 5.0f*z2)); // sqrt(42)*x*(1 - 5*z2)/(8*sqrt(pi))
data_out(14) = (T)(1.4453057213202769f*z*(x2 - y2)); // sqrt(105)*z*(x2 - y2)/(4*sqrt(pi))
data_out(15) = (T)(0.59004358992664352f*x*(-x2 + 3.0f*y2)); // sqrt(70)*x*(-x2 + 3*y2)/(8*sqrt(pi))
if (degree <= 4) { return; }
data_out(16) = (T)(2.5033429417967046f*xy*(x2 - y2)); // 3*sqrt(35)*xy*(x2 - y2)/(4*sqrt(pi))
data_out(17) = (T)(1.7701307697799304f*yz*(-3.0f*x2 + y2)); // 3*sqrt(70)*yz*(-3*x2 + y2)/(8*sqrt(pi))
data_out(18) = (T)(0.94617469575756008f*xy*(7.0f*z2 - 1.0f)); // 3*sqrt(5)*xy*(7*z2 - 1)/(4*sqrt(pi))
data_out(19) = (T)(0.66904654355728921f*yz*(3.0f - 7.0f*z2)); // 3*sqrt(10)*yz*(3 - 7*z2)/(8*sqrt(pi))
data_out(20) = (T)(-3.1735664074561294f*z2 + 3.7024941420321507f*z4 + 0.31735664074561293f); // 3*(-30*z2 + 35*z4 + 3)/(16*sqrt(pi))
data_out(21) = (T)(0.66904654355728921f*xz*(3.0f - 7.0f*z2)); // 3*sqrt(10)*xz*(3 - 7*z2)/(8*sqrt(pi))
data_out(22) = (T)(0.47308734787878004f*(x2 - y2)*(7.0f*z2 - 1.0f)); // 3*sqrt(5)*(x2 - y2)*(7*z2 - 1)/(8*sqrt(pi))
data_out(23) = (T)(1.7701307697799304f*xz*(-x2 + 3.0f*y2)); // 3*sqrt(70)*xz*(-x2 + 3*y2)/(8*sqrt(pi))
data_out(24) = (T)(-3.7550144126950569f*x2*y2 + 0.62583573544917614f*x4 + 0.62583573544917614f*y4); // 3*sqrt(35)*(-6*x2*y2 + x4 + y4)/(16*sqrt(pi))
if (degree <= 5) { return; }
data_out(25) = (T)(0.65638205684017015f*y*(10.0f*x2*y2 - 5.0f*x4 - y4)); // 3*sqrt(154)*y*(10*x2*y2 - 5*x4 - y4)/(32*sqrt(pi))
data_out(26) = (T)(8.3026492595241645f*xy*z*(x2 - y2)); // 3*sqrt(385)*xy*z*(x2 - y2)/(4*sqrt(pi))
data_out(27) = (T)(-0.48923829943525038f*y*(3.0f*x2 - y2)*(9.0f*z2 - 1.0f)); // -sqrt(770)*y*(3*x2 - y2)*(9*z2 - 1)/(32*sqrt(pi))
data_out(28) = (T)(4.7935367849733241f*xy*z*(3.0f*z2 - 1.0f)); // sqrt(1155)*xy*z*(3*z2 - 1)/(4*sqrt(pi))
data_out(29) = (T)(0.45294665119569694f*y*(14.0f*z2 - 21.0f*z4 - 1.0f)); // sqrt(165)*y*(14*z2 - 21*z4 - 1)/(16*sqrt(pi))
data_out(30) = (T)(0.1169503224534236f*z*(-70.0f*z2 + 63.0f*z4 + 15.0f)); // sqrt(11)*z*(-70*z2 + 63*z4 + 15)/(16*sqrt(pi))
data_out(31) = (T)(0.45294665119569694f*x*(14.0f*z2 - 21.0f*z4 - 1.0f)); // sqrt(165)*x*(14*z2 - 21*z4 - 1)/(16*sqrt(pi))
data_out(32) = (T)(2.3967683924866621f*z*(x2 - y2)*(3.0f*z2 - 1.0f)); // sqrt(1155)*z*(x2 - y2)*(3*z2 - 1)/(8*sqrt(pi))
data_out(33) = (T)(-0.48923829943525038f*x*(x2 - 3.0f*y2)*(9.0f*z2 - 1.0f)); // -sqrt(770)*x*(x2 - 3*y2)*(9*z2 - 1)/(32*sqrt(pi))
data_out(34) = (T)(2.0756623148810411f*z*(-6.0f*x2*y2 + x4 + y4)); // 3*sqrt(385)*z*(-6*x2*y2 + x4 + y4)/(16*sqrt(pi))
data_out(35) = (T)(0.65638205684017015f*x*(10.0f*x2*y2 - x4 - 5.0f*y4)); // 3*sqrt(154)*x*(10*x2*y2 - x4 - 5*y4)/(32*sqrt(pi))
if (degree <= 6) { return; }
data_out(36) = (T)(1.3663682103838286f*xy*(-10.0f*x2*y2 + 3.0f*x4 + 3.0f*y4)); // sqrt(6006)*xy*(-10*x2*y2 + 3*x4 + 3*y4)/(32*sqrt(pi))
data_out(37) = (T)(2.3666191622317521f*yz*(10.0f*x2*y2 - 5.0f*x4 - y4)); // 3*sqrt(2002)*yz*(10*x2*y2 - 5*x4 - y4)/(32*sqrt(pi))
data_out(38) = (T)(2.0182596029148963f*xy*(x2 - y2)*(11.0f*z2 - 1.0f)); // 3*sqrt(91)*xy*(x2 - y2)*(11*z2 - 1)/(8*sqrt(pi))
data_out(39) = (T)(-0.92120525951492349f*yz*(3.0f*x2 - y2)*(11.0f*z2 - 3.0f)); // -sqrt(2730)*yz*(3*x2 - y2)*(11*z2 - 3)/(32*sqrt(pi))
data_out(40) = (T)(0.92120525951492349f*xy*(-18.0f*z2 + 33.0f*z4 + 1.0f)); // sqrt(2730)*xy*(-18*z2 + 33*z4 + 1)/(32*sqrt(pi))
data_out(41) = (T)(0.58262136251873131f*yz*(30.0f*z2 - 33.0f*z4 - 5.0f)); // sqrt(273)*yz*(30*z2 - 33*z4 - 5)/(16*sqrt(pi))
data_out(42) = (T)(6.6747662381009842f*z2 - 20.024298714302954f*z4 + 14.684485723822165f*z6 - 0.31784601133814211f); // sqrt(13)*(105*z2 - 315*z4 + 231*z6 - 5)/(32*sqrt(pi))
data_out(43) = (T)(0.58262136251873131f*xz*(30.0f*z2 - 33.0f*z4 - 5.0f)); // sqrt(273)*xz*(30*z2 - 33*z4 - 5)/(16*sqrt(pi))
data_out(44) = (T)(0.46060262975746175f*(x2 - y2)*(11.0f*z2*(3.0f*z2 - 1.0f) - 7.0f*z2 + 1.0f)); // sqrt(2730)*(x2 - y2)*(11*z2*(3*z2 - 1) - 7*z2 + 1)/(64*sqrt(pi))
data_out(45) = (T)(-0.92120525951492349f*xz*(x2 - 3.0f*y2)*(11.0f*z2 - 3.0f)); // -sqrt(2730)*xz*(x2 - 3*y2)*(11*z2 - 3)/(32*sqrt(pi))
data_out(46) = (T)(0.50456490072872406f*(11.0f*z2 - 1.0f)*(-6.0f*x2*y2 + x4 + y4)); // 3*sqrt(91)*(11*z2 - 1)*(-6*x2*y2 + x4 + y4)/(32*sqrt(pi))
data_out(47) = (T)(2.3666191622317521f*xz*(10.0f*x2*y2 - x4 - 5.0f*y4)); // 3*sqrt(2002)*xz*(10*x2*y2 - x4 - 5*y4)/(32*sqrt(pi))
data_out(48) = (T)(10.247761577878714f*x2*y4 - 10.247761577878714f*x4*y2 + 0.6831841051919143f*x6 - 0.6831841051919143f*y6); // sqrt(6006)*(15*x2*y4 - 15*x4*y2 + x6 - y6)/(64*sqrt(pi))
if (degree <= 7) { return; }
data_out(49) = (T)(0.70716273252459627f*y*(-21.0f*x2*y4 + 35.0f*x4*y2 - 7.0f*x6 + y6)); // 3*sqrt(715)*y*(-21*x2*y4 + 35*x4*y2 - 7*x6 + y6)/(64*sqrt(pi))
data_out(50) = (T)(5.2919213236038001f*xy*z*(-10.0f*x2*y2 + 3.0f*x4 + 3.0f*y4)); // 3*sqrt(10010)*xy*z*(-10*x2*y2 + 3*x4 + 3*y4)/(32*sqrt(pi))
data_out(51) = (T)(-0.51891557872026028f*y*(13.0f*z2 - 1.0f)*(-10.0f*x2*y2 + 5.0f*x4 + y4)); // -3*sqrt(385)*y*(13*z2 - 1)*(-10*x2*y2 + 5*x4 + y4)/(64*sqrt(pi))
data_out(52) = (T)(4.1513246297620823f*xy*z*(x2 - y2)*(13.0f*z2 - 3.0f)); // 3*sqrt(385)*xy*z*(x2 - y2)*(13*z2 - 3)/(8*sqrt(pi))
data_out(53) = (T)(-0.15645893386229404f*y*(3.0f*x2 - y2)*(13.0f*z2*(11.0f*z2 - 3.0f) - 27.0f*z2 + 3.0f)); // -3*sqrt(35)*y*(3*x2 - y2)*(13*z2*(11*z2 - 3) - 27*z2 + 3)/(64*sqrt(pi))
data_out(54) = (T)(0.44253269244498261f*xy*z*(-110.0f*z2 + 143.0f*z4 + 15.0f)); // 3*sqrt(70)*xy*z*(-110*z2 + 143*z4 + 15)/(32*sqrt(pi))
data_out(55) = (T)(0.090331607582517306f*y*(-135.0f*z2 + 495.0f*z4 - 429.0f*z6 + 5.0f)); // sqrt(105)*y*(-135*z2 + 495*z4 - 429*z6 + 5)/(64*sqrt(pi))
data_out(56) = (T)(0.068284276912004949f*z*(315.0f*z2 - 693.0f*z4 + 429.0f*z6 - 35.0f)); // sqrt(15)*z*(315*z2 - 693*z4 + 429*z6 - 35)/(32*sqrt(pi))
data_out(57) = (T)(0.090331607582517306f*x*(-135.0f*z2 + 495.0f*z4 - 429.0f*z6 + 5.0f)); // sqrt(105)*x*(-135*z2 + 495*z4 - 429*z6 + 5)/(64*sqrt(pi))
data_out(58) = (T)(0.07375544874083044f*z*(x2 - y2)*(143.0f*z2*(3.0f*z2 - 1.0f) - 187.0f*z2 + 45.0f)); // sqrt(70)*z*(x2 - y2)*(143*z2*(3*z2 - 1) - 187*z2 + 45)/(64*sqrt(pi))
data_out(59) = (T)(-0.15645893386229404f*x*(x2 - 3.0f*y2)*(13.0f*z2*(11.0f*z2 - 3.0f) - 27.0f*z2 + 3.0f)); // -3*sqrt(35)*x*(x2 - 3*y2)*(13*z2*(11*z2 - 3) - 27*z2 + 3)/(64*sqrt(pi))
data_out(60) = (T)(1.0378311574405206f*z*(13.0f*z2 - 3.0f)*(-6.0f*x2*y2 + x4 + y4)); // 3*sqrt(385)*z*(13*z2 - 3)*(-6*x2*y2 + x4 + y4)/(32*sqrt(pi))
data_out(61) = (T)(-0.51891557872026028f*x*(13.0f*z2 - 1.0f)*(-10.0f*x2*y2 + x4 + 5.0f*y4)); // -3*sqrt(385)*x*(13*z2 - 1)*(-10*x2*y2 + x4 + 5*y4)/(64*sqrt(pi))
data_out(62) = (T)(2.6459606618019f*z*(15.0f*x2*y4 - 15.0f*x4*y2 + x6 - y6)); // 3*sqrt(10010)*z*(15*x2*y4 - 15*x4*y2 + x6 - y6)/(64*sqrt(pi))
data_out(63) = (T)(0.70716273252459627f*x*(-35.0f*x2*y4 + 21.0f*x4*y2 - x6 + 7.0f*y6)); // 3*sqrt(715)*x*(-35*x2*y4 + 21*x4*y2 - x6 + 7*y6)/(64*sqrt(pi))
}
template <typename T, typename ARRAY_T>
__device__ vec3 sh_enc_grad(uint32_t degree, float x, float y, float z, const ARRAY_T& dL_dy) {
// Let compiler figure out how to sequence/reorder these calculations w.r.t. branches
float xy=x*y, xz=x*z, yz=y*z, x2=x*x, y2=y*y, z2=z*z;
float x4=x2*x2, y4=y2*y2, z4=z2*z2;
float x6=x4*x2, y6=y4*y2, z6=z4*z2;
vec3 d(0.0f);
// d.x += (float)dL_dy(0) * (0); // 0
// d.y += (float)dL_dy(0) * (0); // 0
// d.z += (float)dL_dy(0) * (0); // 0
if (degree <= 1) { return d; }
// d.x += (float)dL_dy(1) * (0); // 0
d.y += (float)dL_dy(1) * (-0.48860251190291992); // -sqrt(3)/(2*sqrt(pi))
// d.z += (float)dL_dy(1) * (0); // 0
// d.x += (float)dL_dy(2) * (0); // 0
// d.y += (float)dL_dy(2) * (0); // 0
d.z += (float)dL_dy(2) * (0.48860251190291992); // sqrt(3)/(2*sqrt(pi))
d.x += (float)dL_dy(3) * (-0.48860251190291992); // -sqrt(3)/(2*sqrt(pi))
// d.y += (float)dL_dy(3) * (0); // 0
// d.z += (float)dL_dy(3) * (0); // 0
if (degree <= 2) { return d; }
d.x += (float)dL_dy(4) * (1.0925484305920792*y); // sqrt(15)*y/(2*sqrt(pi))
d.y += (float)dL_dy(4) * (1.0925484305920792*x); // sqrt(15)*x/(2*sqrt(pi))
// d.z += (float)dL_dy(4) * (0); // 0
// d.x += (float)dL_dy(5) * (0); // 0
d.y += (float)dL_dy(5) * (-1.0925484305920792*z); // -sqrt(15)*z/(2*sqrt(pi))
d.z += (float)dL_dy(5) * (-1.0925484305920792*y); // -sqrt(15)*y/(2*sqrt(pi))
// d.x += (float)dL_dy(6) * (0); // 0
// d.y += (float)dL_dy(6) * (0); // 0
d.z += (float)dL_dy(6) * (1.8923493915151202*z); // 3*sqrt(5)*z/(2*sqrt(pi))
d.x += (float)dL_dy(7) * (-1.0925484305920792*z); // -sqrt(15)*z/(2*sqrt(pi))
// d.y += (float)dL_dy(7) * (0); // 0
d.z += (float)dL_dy(7) * (-1.0925484305920792*x); // -sqrt(15)*x/(2*sqrt(pi))
d.x += (float)dL_dy(8) * (1.0925484305920792*x); // sqrt(15)*x/(2*sqrt(pi))
d.y += (float)dL_dy(8) * (-1.0925484305920792*y); // -sqrt(15)*y/(2*sqrt(pi))
// d.z += (float)dL_dy(8) * (0); // 0
if (degree <= 3) { return d; }
d.x += (float)dL_dy(9) * (-3.5402615395598609*xy); // -3*sqrt(70)*xy/(4*sqrt(pi))
d.y += (float)dL_dy(9) * (-1.7701307697799304*x2 + 1.7701307697799304*y2); // 3*sqrt(70)*(-x2 + y2)/(8*sqrt(pi))
// d.z += (float)dL_dy(9) * (0); // 0
d.x += (float)dL_dy(10) * (2.8906114426405538*yz); // sqrt(105)*yz/(2*sqrt(pi))
d.y += (float)dL_dy(10) * (2.8906114426405538*xz); // sqrt(105)*xz/(2*sqrt(pi))
d.z += (float)dL_dy(10) * (2.8906114426405538*xy); // sqrt(105)*xy/(2*sqrt(pi))
// d.x += (float)dL_dy(11) * (0); // 0
d.y += (float)dL_dy(11) * (0.45704579946446572 - 2.2852289973223288*z2); // sqrt(42)*(1 - 5*z2)/(8*sqrt(pi))
d.z += (float)dL_dy(11) * (-4.5704579946446566*yz); // -5*sqrt(42)*yz/(4*sqrt(pi))
// d.x += (float)dL_dy(12) * (0); // 0
// d.y += (float)dL_dy(12) * (0); // 0
d.z += (float)dL_dy(12) * (5.597644988851731*z2 - 1.1195289977703462); // 3*sqrt(7)*(5*z2 - 1)/(4*sqrt(pi))
d.x += (float)dL_dy(13) * (0.45704579946446572 - 2.2852289973223288*z2); // sqrt(42)*(1 - 5*z2)/(8*sqrt(pi))
// d.y += (float)dL_dy(13) * (0); // 0
d.z += (float)dL_dy(13) * (-4.5704579946446566*xz); // -5*sqrt(42)*xz/(4*sqrt(pi))
d.x += (float)dL_dy(14) * (2.8906114426405538*xz); // sqrt(105)*xz/(2*sqrt(pi))
d.y += (float)dL_dy(14) * (-2.8906114426405538*yz); // -sqrt(105)*yz/(2*sqrt(pi))
d.z += (float)dL_dy(14) * (1.4453057213202769*x2 - 1.4453057213202769*y2); // sqrt(105)*(x2 - y2)/(4*sqrt(pi))
d.x += (float)dL_dy(15) * (-1.7701307697799304*x2 + 1.7701307697799304*y2); // 3*sqrt(70)*(-x2 + y2)/(8*sqrt(pi))
d.y += (float)dL_dy(15) * (3.5402615395598609*xy); // 3*sqrt(70)*xy/(4*sqrt(pi))
// d.z += (float)dL_dy(15) * (0); // 0
if (degree <= 4) { return d; }
d.x += (float)dL_dy(16) * (2.5033429417967046*y*(3.0*x2 - y2)); // 3*sqrt(35)*y*(3*x2 - y2)/(4*sqrt(pi))
d.y += (float)dL_dy(16) * (2.5033429417967046*x*(x2 - 3.0*y2)); // 3*sqrt(35)*x*(x2 - 3*y2)/(4*sqrt(pi))
// d.z += (float)dL_dy(16) * (0); // 0
d.x += (float)dL_dy(17) * (-10.620784618679583*xy*z); // -9*sqrt(70)*xy*z/(4*sqrt(pi))
d.y += (float)dL_dy(17) * (5.3103923093397913*z*(-x2 + y2)); // 9*sqrt(70)*z*(-x2 + y2)/(8*sqrt(pi))
d.z += (float)dL_dy(17) * (1.7701307697799304*y*(-3.0*x2 + y2)); // 3*sqrt(70)*y*(-3*x2 + y2)/(8*sqrt(pi))
d.x += (float)dL_dy(18) * (0.94617469575756008*y*(7.0*z2 - 1.0)); // 3*sqrt(5)*y*(7*z2 - 1)/(4*sqrt(pi))
d.y += (float)dL_dy(18) * (0.94617469575756008*x*(7.0*z2 - 1.0)); // 3*sqrt(5)*x*(7*z2 - 1)/(4*sqrt(pi))
d.z += (float)dL_dy(18) * (13.246445740605839*xy*z); // 21*sqrt(5)*xy*z/(2*sqrt(pi))
// d.x += (float)dL_dy(19) * (0); // 0
d.y += (float)dL_dy(19) * (0.66904654355728921*z*(3.0 - 7.0*z2)); // 3*sqrt(10)*z*(3 - 7*z2)/(8*sqrt(pi))
d.z += (float)dL_dy(19) * (2.0071396306718676*y*(1.0 - 7.0*z2)); // 9*sqrt(10)*y*(1 - 7*z2)/(8*sqrt(pi))
// d.x += (float)dL_dy(20) * (0); // 0
// d.y += (float)dL_dy(20) * (0); // 0
d.z += (float)dL_dy(20) * (14.809976568128603*z*z2 - 6.3471328149122579*z); // (105*z**3 - 45*z)/(4*sqrt(pi))
d.x += (float)dL_dy(21) * (0.66904654355728921*z*(3.0 - 7.0*z2)); // 3*sqrt(10)*z*(3 - 7*z2)/(8*sqrt(pi))
// d.y += (float)dL_dy(21) * (0); // 0
d.z += (float)dL_dy(21) * (2.0071396306718676*x*(1.0 - 7.0*z2)); // 9*sqrt(10)*x*(1 - 7*z2)/(8*sqrt(pi))
d.x += (float)dL_dy(22) * (0.94617469575756008*x*(7.0*z2 - 1.0)); // 3*sqrt(5)*x*(7*z2 - 1)/(4*sqrt(pi))
d.y += (float)dL_dy(22) * (0.94617469575756008*y*(1.0 - 7.0*z2)); // 3*sqrt(5)*y*(1 - 7*z2)/(4*sqrt(pi))
d.z += (float)dL_dy(22) * (6.6232228703029197*z*(x2 - y2)); // 21*sqrt(5)*z*(x2 - y2)/(4*sqrt(pi))
d.x += (float)dL_dy(23) * (5.3103923093397913*z*(-x2 + y2)); // 9*sqrt(70)*z*(-x2 + y2)/(8*sqrt(pi))
d.y += (float)dL_dy(23) * (10.620784618679583*xy*z); // 9*sqrt(70)*xy*z/(4*sqrt(pi))
d.z += (float)dL_dy(23) * (1.7701307697799304*x*(-x2 + 3.0*y2)); // 3*sqrt(70)*x*(-x2 + 3*y2)/(8*sqrt(pi))
d.x += (float)dL_dy(24) * (2.5033429417967046*x*(x2 - 3.0*y2)); // 3*sqrt(35)*x*(x2 - 3*y2)/(4*sqrt(pi))
d.y += (float)dL_dy(24) * (2.5033429417967046*y*(-3.0*x2 + y2)); // 3*sqrt(35)*y*(-3*x2 + y2)/(4*sqrt(pi))
// d.z += (float)dL_dy(24) * (0); // 0
if (degree <= 5) { return d; }
d.x += (float)dL_dy(25) * (13.127641136803401*xy*(-x2 + y2)); // 15*sqrt(154)*xy*(-x2 + y2)/(8*sqrt(pi))
d.y += (float)dL_dy(25) * (19.6914617052051*x2*y2 - 3.2819102842008503*x4 - 3.2819102842008503*y4); // 15*sqrt(154)*(6*x2*y2 - x4 - y4)/(32*sqrt(pi))
// d.z += (float)dL_dy(25) * (0); // 0
d.x += (float)dL_dy(26) * (8.3026492595241645*yz*(3.0*x2 - y2)); // 3*sqrt(385)*yz*(3*x2 - y2)/(4*sqrt(pi))
d.y += (float)dL_dy(26) * (8.3026492595241645*xz*(x2 - 3.0*y2)); // 3*sqrt(385)*xz*(x2 - 3*y2)/(4*sqrt(pi))
d.z += (float)dL_dy(26) * (8.3026492595241645*xy*(x2 - y2)); // 3*sqrt(385)*xy*(x2 - y2)/(4*sqrt(pi))
d.x += (float)dL_dy(27) * (2.9354297966115022*xy*(1.0 - 9.0*z2)); // 3*sqrt(770)*xy*(1 - 9*z2)/(16*sqrt(pi))
d.y += (float)dL_dy(27) * (-1.4677148983057511*(x2 - y2)*(9.0*z2 - 1.0)); // -3*sqrt(770)*(x2 - y2)*(9*z2 - 1)/(32*sqrt(pi))
d.z += (float)dL_dy(27) * (8.8062893898345074*yz*(-3.0*x2 + y2)); // 9*sqrt(770)*yz*(-3*x2 + y2)/(16*sqrt(pi))
d.x += (float)dL_dy(28) * (4.7935367849733241*yz*(3.0*z2 - 1.0)); // sqrt(1155)*yz*(3*z2 - 1)/(4*sqrt(pi))
d.y += (float)dL_dy(28) * (4.7935367849733241*xz*(3.0*z2 - 1.0)); // sqrt(1155)*xz*(3*z2 - 1)/(4*sqrt(pi))
d.z += (float)dL_dy(28) * (4.7935367849733241*xy*(9.0*z2 - 1.0)); // sqrt(1155)*xy*(9*z2 - 1)/(4*sqrt(pi))
// d.x += (float)dL_dy(29) * (0); // 0
d.y += (float)dL_dy(29) * (6.3412531167397574*z2 - 9.5118796751096362*z4 - 0.45294665119569694); // sqrt(165)*(14*z2 - 21*z4 - 1)/(16*sqrt(pi))
d.z += (float)dL_dy(29) * (12.682506233479513*yz*(1.0 - 3.0*z2)); // 7*sqrt(165)*yz*(1 - 3*z2)/(4*sqrt(pi))
// d.x += (float)dL_dy(30) * (0); // 0
// d.y += (float)dL_dy(30) * (0); // 0
d.z += (float)dL_dy(30) * (-24.559567715218954*z2 + 36.839351572828434*z4 + 1.754254836801354); // 15*sqrt(11)*(-14*z2 + 21*z4 + 1)/(16*sqrt(pi))
d.x += (float)dL_dy(31) * (6.3412531167397574*z2 - 9.5118796751096362*z4 - 0.45294665119569694); // sqrt(165)*(14*z2 - 21*z4 - 1)/(16*sqrt(pi))
// d.y += (float)dL_dy(31) * (0); // 0
d.z += (float)dL_dy(31) * (12.682506233479513*xz*(1.0 - 3.0*z2)); // 7*sqrt(165)*xz*(1 - 3*z2)/(4*sqrt(pi))
d.x += (float)dL_dy(32) * (4.7935367849733241*xz*(3.0*z2 - 1.0)); // sqrt(1155)*xz*(3*z2 - 1)/(4*sqrt(pi))
d.y += (float)dL_dy(32) * (4.7935367849733241*yz*(1.0 - 3.0*z2)); // sqrt(1155)*yz*(1 - 3*z2)/(4*sqrt(pi))
d.z += (float)dL_dy(32) * (2.3967683924866621*(x2 - y2)*(9.0*z2 - 1.0)); // sqrt(1155)*(x2 - y2)*(9*z2 - 1)/(8*sqrt(pi))
d.x += (float)dL_dy(33) * (-13.209434084751759*x2*z2 + 1.4677148983057511*x2 + 13.209434084751759*y2*z2 - 1.4677148983057511*y2); // 3*sqrt(770)*(-9*x2*z2 + x2 + 9*y2*z2 - y2)/(32*sqrt(pi))
d.y += (float)dL_dy(33) * (2.9354297966115022*xy*(9.0*z2 - 1.0)); // 3*sqrt(770)*xy*(9*z2 - 1)/(16*sqrt(pi))
d.z += (float)dL_dy(33) * (8.8062893898345074*xz*(-x2 + 3.0*y2)); // 9*sqrt(770)*xz*(-x2 + 3*y2)/(16*sqrt(pi))
d.x += (float)dL_dy(34) * (8.3026492595241645*xz*(x2 - 3.0*y2)); // 3*sqrt(385)*xz*(x2 - 3*y2)/(4*sqrt(pi))
d.y += (float)dL_dy(34) * (8.3026492595241645*yz*(-3.0*x2 + y2)); // 3*sqrt(385)*yz*(-3*x2 + y2)/(4*sqrt(pi))
d.z += (float)dL_dy(34) * (-12.453973889286246*x2*y2 + 2.0756623148810411*x4 + 2.0756623148810411*y4); // 3*sqrt(385)*(-6*x2*y2 + x4 + y4)/(16*sqrt(pi))
d.x += (float)dL_dy(35) * (19.6914617052051*x2*y2 - 3.2819102842008503*x4 - 3.2819102842008503*y4); // 15*sqrt(154)*(6*x2*y2 - x4 - y4)/(32*sqrt(pi))
d.y += (float)dL_dy(35) * (13.127641136803401*xy*(x2 - y2)); // 15*sqrt(154)*xy*(x2 - y2)/(8*sqrt(pi))
// d.z += (float)dL_dy(35) * (0); // 0
if (degree <= 6) { return d; }
d.x += (float)dL_dy(36) * (4.0991046311514854*y*(-10.0*x2*y2 + 5.0*x4 + y4)); // 3*sqrt(6006)*y*(-10*x2*y2 + 5*x4 + y4)/(32*sqrt(pi))
d.y += (float)dL_dy(36) * (4.0991046311514854*x*(-10.0*x2*y2 + x4 + 5.0*y4)); // 3*sqrt(6006)*x*(-10*x2*y2 + x4 + 5*y4)/(32*sqrt(pi))
// d.z += (float)dL_dy(36) * (0); // 0
d.x += (float)dL_dy(37) * (47.332383244635047*xy*z*(-x2 + y2)); // 15*sqrt(2002)*xy*z*(-x2 + y2)/(8*sqrt(pi))
d.y += (float)dL_dy(37) * (11.833095811158762*z*(6.0*x2*y2 - x4 - y4)); // 15*sqrt(2002)*z*(6*x2*y2 - x4 - y4)/(32*sqrt(pi))
d.z += (float)dL_dy(37) * (2.3666191622317521*y*(10.0*x2*y2 - 5.0*x4 - y4)); // 3*sqrt(2002)*y*(10*x2*y2 - 5*x4 - y4)/(32*sqrt(pi))
d.x += (float)dL_dy(38) * (2.0182596029148963*y*(3.0*x2 - y2)*(11.0*z2 - 1.0)); // 3*sqrt(91)*y*(3*x2 - y2)*(11*z2 - 1)/(8*sqrt(pi))
d.y += (float)dL_dy(38) * (2.0182596029148963*x*(x2 - 3.0*y2)*(11.0*z2 - 1.0)); // 3*sqrt(91)*x*(x2 - 3*y2)*(11*z2 - 1)/(8*sqrt(pi))
d.z += (float)dL_dy(38) * (44.401711264127719*xy*z*(x2 - y2)); // 33*sqrt(91)*xy*z*(x2 - y2)/(4*sqrt(pi))
d.x += (float)dL_dy(39) * (5.5272315570895412*xy*z*(3.0 - 11.0*z2)); // 3*sqrt(2730)*xy*z*(3 - 11*z2)/(16*sqrt(pi))
d.y += (float)dL_dy(39) * (-2.7636157785447706*z*(x2 - y2)*(11.0*z2 - 3.0)); // -3*sqrt(2730)*z*(x2 - y2)*(11*z2 - 3)/(32*sqrt(pi))
d.z += (float)dL_dy(39) * (-2.7636157785447706*y*(3.0*x2 - y2)*(11.0*z2 - 1.0)); // -3*sqrt(2730)*y*(3*x2 - y2)*(11*z2 - 1)/(32*sqrt(pi))
d.x += (float)dL_dy(40) * (0.92120525951492349*y*(-18.0*z2 + 33.0*z4 + 1.0)); // sqrt(2730)*y*(-18*z2 + 33*z4 + 1)/(32*sqrt(pi))
d.y += (float)dL_dy(40) * (0.92120525951492349*x*(-18.0*z2 + 33.0*z4 + 1.0)); // sqrt(2730)*x*(-18*z2 + 33*z4 + 1)/(32*sqrt(pi))
d.z += (float)dL_dy(40) * (11.054463114179082*xy*z*(11.0*z2 - 3.0)); // 3*sqrt(2730)*xy*z*(11*z2 - 3)/(8*sqrt(pi))
// d.x += (float)dL_dy(41) * (0); // 0
d.y += (float)dL_dy(41) * (0.58262136251873131*z*(30.0*z2 - 33.0*z4 - 5.0)); // sqrt(273)*z*(30*z2 - 33*z4 - 5)/(16*sqrt(pi))
d.z += (float)dL_dy(41) * (2.9131068125936568*y*(18.0*z2 - 33.0*z4 - 1.0)); // 5*sqrt(273)*y*(18*z2 - 33*z4 - 1)/(16*sqrt(pi))
// d.x += (float)dL_dy(42) * (0); // 0
// d.y += (float)dL_dy(42) * (0); // 0
d.z += (float)dL_dy(42) * (2.6699064952403937*z*(-30.0*z2 + 33.0*z4 + 5.0)); // 21*sqrt(13)*z*(-30*z2 + 33*z4 + 5)/(16*sqrt(pi))
d.x += (float)dL_dy(43) * (0.58262136251873131*z*(30.0*z2 - 33.0*z4 - 5.0)); // sqrt(273)*z*(30*z2 - 33*z4 - 5)/(16*sqrt(pi))
// d.y += (float)dL_dy(43) * (0); // 0
d.z += (float)dL_dy(43) * (2.9131068125936568*x*(18.0*z2 - 33.0*z4 - 1.0)); // 5*sqrt(273)*x*(18*z2 - 33*z4 - 1)/(16*sqrt(pi))
d.x += (float)dL_dy(44) * (0.92120525951492349*x*(-18.0*z2 + 33.0*z4 + 1.0)); // sqrt(2730)*x*(-18*z2 + 33*z4 + 1)/(32*sqrt(pi))
d.y += (float)dL_dy(44) * (0.92120525951492349*y*(18.0*z2 - 33.0*z4 - 1.0)); // sqrt(2730)*y*(18*z2 - 33*z4 - 1)/(32*sqrt(pi))
d.z += (float)dL_dy(44) * (5.5272315570895412*z*(x2 - y2)*(11.0*z2 - 3.0)); // 3*sqrt(2730)*z*(x2 - y2)*(11*z2 - 3)/(16*sqrt(pi))
d.x += (float)dL_dy(45) * (-2.7636157785447706*z*(x2 - y2)*(11.0*z2 - 3.0)); // -3*sqrt(2730)*z*(x2 - y2)*(11*z2 - 3)/(32*sqrt(pi))
d.y += (float)dL_dy(45) * (5.5272315570895412*xy*z*(11.0*z2 - 3.0)); // 3*sqrt(2730)*xy*z*(11*z2 - 3)/(16*sqrt(pi))
d.z += (float)dL_dy(45) * (-2.7636157785447706*x*(x2 - 3.0*y2)*(11.0*z2 - 1.0)); // -3*sqrt(2730)*x*(x2 - 3*y2)*(11*z2 - 1)/(32*sqrt(pi))
d.x += (float)dL_dy(46) * (2.0182596029148963*x*(x2 - 3.0*y2)*(11.0*z2 - 1.0)); // 3*sqrt(91)*x*(x2 - 3*y2)*(11*z2 - 1)/(8*sqrt(pi))
d.y += (float)dL_dy(46) * (-2.0182596029148963*y*(3.0*x2 - y2)*(11.0*z2 - 1.0)); // -3*sqrt(91)*y*(3*x2 - y2)*(11*z2 - 1)/(8*sqrt(pi))
d.z += (float)dL_dy(46) * (11.10042781603193*z*(-6.0*x2*y2 + x4 + y4)); // 33*sqrt(91)*z*(-6*x2*y2 + x4 + y4)/(16*sqrt(pi))
d.x += (float)dL_dy(47) * (11.833095811158762*z*(6.0*x2*y2 - x4 - y4)); // 15*sqrt(2002)*z*(6*x2*y2 - x4 - y4)/(32*sqrt(pi))
d.y += (float)dL_dy(47) * (47.332383244635047*xy*z*(x2 - y2)); // 15*sqrt(2002)*xy*z*(x2 - y2)/(8*sqrt(pi))
d.z += (float)dL_dy(47) * (2.3666191622317521*x*(10.0*x2*y2 - x4 - 5.0*y4)); // 3*sqrt(2002)*x*(10*x2*y2 - x4 - 5*y4)/(32*sqrt(pi))
d.x += (float)dL_dy(48) * (4.0991046311514854*x*(-10.0*x2*y2 + x4 + 5.0*y4)); // 3*sqrt(6006)*x*(-10*x2*y2 + x4 + 5*y4)/(32*sqrt(pi))
d.y += (float)dL_dy(48) * (4.0991046311514854*y*(10.0*x2*y2 - 5.0*x4 - y4)); // 3*sqrt(6006)*y*(10*x2*y2 - 5*x4 - y4)/(32*sqrt(pi))
// d.z += (float)dL_dy(48) * (0); // 0
if (degree <= 7) { return d; }
d.x += (float)dL_dy(49) * (9.9002782553443485*xy*(10.0*x2*y2 - 3.0*x4 - 3.0*y4)); // 21*sqrt(715)*xy*(10*x2*y2 - 3*x4 - 3*y4)/(32*sqrt(pi))
d.y += (float)dL_dy(49) * (-74.252086915082614*x2*y4 + 74.252086915082614*x4*y2 - 4.9501391276721742*x6 + 4.9501391276721742*y6); // 21*sqrt(715)*(-15*x2*y4 + 15*x4*y2 - x6 + y6)/(64*sqrt(pi))
// d.z += (float)dL_dy(49) * (0); // 0
d.x += (float)dL_dy(50) * (15.875763970811402*yz*(-10.0*x2*y2 + 5.0*x4 + y4)); // 9*sqrt(10010)*yz*(-10*x2*y2 + 5*x4 + y4)/(32*sqrt(pi))
d.y += (float)dL_dy(50) * (15.875763970811402*xz*(-10.0*x2*y2 + x4 + 5.0*y4)); // 9*sqrt(10010)*xz*(-10*x2*y2 + x4 + 5*y4)/(32*sqrt(pi))
d.z += (float)dL_dy(50) * (5.2919213236038001*xy*(-10.0*x2*y2 + 3.0*x4 + 3.0*y4)); // 3*sqrt(10010)*xy*(-10*x2*y2 + 3*x4 + 3*y4)/(32*sqrt(pi))
d.x += (float)dL_dy(51) * (-10.378311574405206*xy*(x2 - y2)*(13.0*z2 - 1.0)); // -15*sqrt(385)*xy*(x2 - y2)*(13*z2 - 1)/(16*sqrt(pi))
d.y += (float)dL_dy(51) * (0.51891557872026028*(13.0*z2 - 1.0)*(10.0*x2*y2 - 5.0*x4 + 4.0*y2*(5.0*x2 - y2) - y4)); // 3*sqrt(385)*(13*z2 - 1)*(10*x2*y2 - 5*x4 + 4*y2*(5*x2 - y2) - y4)/(64*sqrt(pi))
d.z += (float)dL_dy(51) * (13.491805046726766*yz*(10.0*x2*y2 - 5.0*x4 - y4)); // 39*sqrt(385)*yz*(10*x2*y2 - 5*x4 - y4)/(32*sqrt(pi))
d.x += (float)dL_dy(52) * (4.1513246297620823*yz*(3.0*x2 - y2)*(13.0*z2 - 3.0)); // 3*sqrt(385)*yz*(3*x2 - y2)*(13*z2 - 3)/(8*sqrt(pi))
d.y += (float)dL_dy(52) * (4.1513246297620823*xz*(x2 - 3.0*y2)*(13.0*z2 - 3.0)); // 3*sqrt(385)*xz*(x2 - 3*y2)*(13*z2 - 3)/(8*sqrt(pi))
d.z += (float)dL_dy(52) * (12.453973889286248*xy*(x2 - y2)*(13.0*z2 - 1.0)); // 9*sqrt(385)*xy*(x2 - y2)*(13*z2 - 1)/(8*sqrt(pi))
d.x += (float)dL_dy(53) * (0.93875360317376422*xy*(66.0*z2 - 143.0*z4 - 3.0)); // 9*sqrt(35)*xy*(66*z2 - 143*z4 - 3)/(32*sqrt(pi))
d.y += (float)dL_dy(53) * (-0.46937680158688211*(x2 - y2)*(13.0*z2*(11.0*z2 - 3.0) - 27.0*z2 + 3.0)); // -9*sqrt(35)*(x2 - y2)*(13*z2*(11*z2 - 3) - 27*z2 + 3)/(64*sqrt(pi))
d.z += (float)dL_dy(53) * (-6.8841930899409371*yz*(3.0*x2 - y2)*(13.0*z2 - 3.0)); // -33*sqrt(35)*yz*(3*x2 - y2)*(13*z2 - 3)/(16*sqrt(pi))
d.x += (float)dL_dy(54) * (0.44253269244498261*yz*(-110.0*z2 + 143.0*z4 + 15.0)); // 3*sqrt(70)*yz*(-110*z2 + 143*z4 + 15)/(32*sqrt(pi))
d.y += (float)dL_dy(54) * (0.44253269244498261*xz*(-110.0*z2 + 143.0*z4 + 15.0)); // 3*sqrt(70)*xz*(-110*z2 + 143*z4 + 15)/(32*sqrt(pi))
d.z += (float)dL_dy(54) * (2.2126634622249131*xy*(-66.0*z2 + 143.0*z4 + 3.0)); // 15*sqrt(70)*xy*(-66*z2 + 143*z4 + 3)/(32*sqrt(pi))
// d.x += (float)dL_dy(55) * (0); // 0
d.y += (float)dL_dy(55) * (-12.194767023639836*z2 + 44.714145753346067*z4 - 38.752259652899923*z6 + 0.45165803791258652); // sqrt(105)*(-135*z2 + 495*z4 - 429*z6 + 5)/(64*sqrt(pi))
d.z += (float)dL_dy(55) * (1.6259689364853116*yz*(110.0*z2 - 143.0*z4 - 15.0)); // 9*sqrt(105)*yz*(110*z2 - 143*z4 - 15)/(32*sqrt(pi))
// d.x += (float)dL_dy(56) * (0); // 0
// d.y += (float)dL_dy(56) * (0); // 0
d.z += (float)dL_dy(56) * (64.528641681844675*z2 - 236.60501950009714*z4 + 205.05768356675085*z6 - 2.3899496919201733); // 7*sqrt(15)*(135*z2 - 495*z4 + 429*z6 - 5)/(32*sqrt(pi))
d.x += (float)dL_dy(57) * (-12.194767023639836*z2 + 44.714145753346067*z4 - 38.752259652899923*z6 + 0.45165803791258652); // sqrt(105)*(-135*z2 + 495*z4 - 429*z6 + 5)/(64*sqrt(pi))
// d.y += (float)dL_dy(57) * (0); // 0
d.z += (float)dL_dy(57) * (1.6259689364853116*xz*(110.0*z2 - 143.0*z4 - 15.0)); // 9*sqrt(105)*xz*(110*z2 - 143*z4 - 15)/(32*sqrt(pi))
d.x += (float)dL_dy(58) * (0.44253269244498261*xz*(-110.0*z2 + 143.0*z4 + 15.0)); // 3*sqrt(70)*xz*(-110*z2 + 143*z4 + 15)/(32*sqrt(pi))
d.y += (float)dL_dy(58) * (0.44253269244498261*yz*(110.0*z2 - 143.0*z4 - 15.0)); // 3*sqrt(70)*yz*(110*z2 - 143*z4 - 15)/(32*sqrt(pi))
d.z += (float)dL_dy(58) * (0.07375544874083044*(x2 - y2)*(143.0*z2*(3.0*z2 - 1.0) + 132.0*z2*(13.0*z2 - 5.0) - 187.0*z2 + 45.0)); // sqrt(70)*(x2 - y2)*(143*z2*(3*z2 - 1) + 132*z2*(13*z2 - 5) - 187*z2 + 45)/(64*sqrt(pi))
d.x += (float)dL_dy(59) * (30.97886890473422*x2*z2 - 67.120882626924143*x2*z4 - 1.4081304047606462*x2 - 30.97886890473422*y2*z2 + 67.120882626924143*y2*z4 + 1.4081304047606462*y2); // 9*sqrt(35)*(66*x2*z2 - 143*x2*z4 - 3*x2 - 66*y2*z2 + 143*y2*z4 + 3*y2)/(64*sqrt(pi))
d.y += (float)dL_dy(59) * (0.93875360317376422*xy*(-66.0*z2 + 143.0*z4 + 3.0)); // 9*sqrt(35)*xy*(-66*z2 + 143*z4 + 3)/(32*sqrt(pi))
d.z += (float)dL_dy(59) * (-6.8841930899409371*xz*(x2 - 3.0*y2)*(13.0*z2 - 3.0)); // -33*sqrt(35)*xz*(x2 - 3*y2)*(13*z2 - 3)/(16*sqrt(pi))
d.x += (float)dL_dy(60) * (4.1513246297620823*xz*(x2 - 3.0*y2)*(13.0*z2 - 3.0)); // 3*sqrt(385)*xz*(x2 - 3*y2)*(13*z2 - 3)/(8*sqrt(pi))
d.y += (float)dL_dy(60) * (-4.1513246297620823*yz*(3.0*x2 - y2)*(13.0*z2 - 3.0)); // -3*sqrt(385)*yz*(3*x2 - y2)*(13*z2 - 3)/(8*sqrt(pi))
d.z += (float)dL_dy(60) * (3.1134934723215619*(13.0*z2 - 1.0)*(-6.0*x2*y2 + x4 + y4)); // 9*sqrt(385)*(13*z2 - 1)*(-6*x2*y2 + x4 + y4)/(32*sqrt(pi))
d.x += (float)dL_dy(61) * (-0.51891557872026028*(13.0*z2 - 1.0)*(-10.0*x2*y2 + 4.0*x2*(x2 - 5.0*y2) + x4 + 5.0*y4)); // -3*sqrt(385)*(13*z2 - 1)*(-10*x2*y2 + 4*x2*(x2 - 5*y2) + x4 + 5*y4)/(64*sqrt(pi))
d.y += (float)dL_dy(61) * (10.378311574405206*xy*(x2 - y2)*(13.0*z2 - 1.0)); // 15*sqrt(385)*xy*(x2 - y2)*(13*z2 - 1)/(16*sqrt(pi))
d.z += (float)dL_dy(61) * (13.491805046726766*xz*(10.0*x2*y2 - x4 - 5.0*y4)); // 39*sqrt(385)*xz*(10*x2*y2 - x4 - 5*y4)/(32*sqrt(pi))
d.x += (float)dL_dy(62) * (15.875763970811402*xz*(-10.0*x2*y2 + x4 + 5.0*y4)); // 9*sqrt(10010)*xz*(-10*x2*y2 + x4 + 5*y4)/(32*sqrt(pi))
d.y += (float)dL_dy(62) * (15.875763970811402*yz*(10.0*x2*y2 - 5.0*x4 - y4)); // 9*sqrt(10010)*yz*(10*x2*y2 - 5*x4 - y4)/(32*sqrt(pi))
d.z += (float)dL_dy(62) * (39.6894099270285*x2*y4 - 39.6894099270285*x4*y2 + 2.6459606618019*x6 - 2.6459606618019*y6); // 3*sqrt(10010)*(15*x2*y4 - 15*x4*y2 + x6 - y6)/(64*sqrt(pi))
d.x += (float)dL_dy(63) * (-74.252086915082614*x2*y4 + 74.252086915082614*x4*y2 - 4.9501391276721742*x6 + 4.9501391276721742*y6); // 21*sqrt(715)*(-15*x2*y4 + 15*x4*y2 - x6 + y6)/(64*sqrt(pi))
d.y += (float)dL_dy(63) * (9.9002782553443485*xy*(-10.0*x2*y2 + 3.0*x4 + 3.0*y4)); // 21*sqrt(715)*xy*(-10*x2*y2 + 3*x4 + 3*y4)/(32*sqrt(pi))
// d.z += (float)dL_dy(63) * (0); // 0
return d;
}
template <uint32_t N_DIMS, uint32_t N_PRIMES>
__device__ uint32_t lcg_hash(const uvec<N_DIMS>& pos_grid, const uint32_t primes[N_PRIMES]) {
static_assert(N_DIMS <= N_PRIMES, "lcg_hash can only hash up to N_PRIMES dimensions.");
uint32_t result = 0;
TCNN_PRAGMA_UNROLL
for (uint32_t i = 0; i < N_DIMS; ++i) {
result ^= pos_grid[i] * primes[i];
}
return result;
}
template <uint32_t N_DIMS>
__device__ uint32_t prime_hash(const uvec<N_DIMS>& pos_grid) {
constexpr uint32_t factors[7] = { 1958374283u, 2654435761u, 805459861u, 3674653429u, 2097192037u, 1434869437u, 2165219737u };
return lcg_hash<N_DIMS, 7>(pos_grid, factors);
}
template <uint32_t N_DIMS>
__device__ uint32_t coherent_prime_hash(const uvec<N_DIMS>& pos_grid) {
constexpr uint32_t factors[7] = { 1u, 2654435761u, 805459861u, 3674653429u, 2097192037u, 1434869437u, 2165219737u };
return lcg_hash<N_DIMS, 7>(pos_grid, factors);
}
template <uint32_t N_DIMS>
__device__ uint32_t reversed_prime_hash(const uvec<N_DIMS>& pos_grid) {
constexpr uint32_t factors[7] = { 2165219737u, 1434869437u, 2097192037u, 3674653429u, 805459861u, 2654435761u, 1958374283u };
return lcg_hash<N_DIMS, 7>(pos_grid, factors);
}
template <uint32_t N_DIMS>
__device__ uint32_t base_convert_hash(const uvec<N_DIMS>& pos_grid) {
// [Allows for arbitary N_DIMS] A simple base conversion hash, used in permuto-encoding
uint32_t k = 0;
TCNN_PRAGMA_UNROLL
for (uint32_t dim = 0; dim < N_DIMS; ++dim) {
k += pos_grid[dim];
k *= 2531011;
}
return k;
}
template <uint32_t N_DIMS>
__device__ uint32_t rng_hash(const uvec<N_DIMS>& pos_grid, const uint32_t seed = 1337) {
constexpr uint32_t N_BITS_PER_DIM = 64 / N_DIMS;
uint64_t step = 0;
TCNN_PRAGMA_UNROLL
for (uint32_t i = 0; i < N_DIMS; ++i) {
step ^= (uint64_t)pos_grid[i] << (i * N_BITS_PER_DIM);
}
default_rng_t rng{seed};
rng.advance((int64_t)step);
return rng.next_uint();
}
template <uint32_t N_DIMS, HashType HASH_TYPE>
__device__
typename std::enable_if<HASH_TYPE!=HashType::BaseConvert, uint32_t>::type
grid_hash(const uvec<N_DIMS>& pos_grid) {
switch (HASH_TYPE) {
case HashType::Prime: return prime_hash<N_DIMS>(pos_grid);
case HashType::CoherentPrime: return coherent_prime_hash<N_DIMS>(pos_grid);
case HashType::ReversedPrime: return reversed_prime_hash<N_DIMS>(pos_grid);
case HashType::Rng: return rng_hash<N_DIMS>(pos_grid);
}
return 0;
}
template <uint32_t N_DIMS, HashType HASH_TYPE>
__device__
typename std::enable_if<HASH_TYPE==HashType::BaseConvert, uint32_t>::type // Use template partial specialization to prevent static assertion on N_DIMS
grid_hash(const uvec<N_DIMS>& pos_grid) {
return base_convert_hash<N_DIMS>(pos_grid);
}
template <uint32_t N_DIMS, HashType HASH_TYPE>
__device__ uint32_t grid_index(const GridType grid_type, const uint32_t hashmap_size, const uint32_t grid_resolution, const uvec<N_DIMS>& pos_grid) {
uint32_t stride = 1;
uint32_t index = 0;
// The second part of the loop condition is needed to avoid integer overflows in finer levels.
TCNN_PRAGMA_UNROLL
for (uint32_t dim = 0; dim < N_DIMS && stride <= hashmap_size; ++dim) {
index += pos_grid[dim] * stride;
stride *= grid_resolution;
}
if (grid_type == GridType::Hash && hashmap_size < stride) {
index = grid_hash<N_DIMS, HASH_TYPE>(pos_grid);
}
return index % hashmap_size;
}
__host__ __device__ inline float grid_scale(uint32_t level, float log2_per_level_scale, uint32_t base_resolution) {
// The -1 means that `base_resolution` refers to the number of grid _vertices_ rather
// than the number of cells. This is slightly different from the notation in the paper,
// but results in nice, power-of-2-scaled parameter grids that fit better into cache lines.
return exp2f(level * log2_per_level_scale) * base_resolution - 1.0f;
}
__host__ __device__ inline uint32_t grid_resolution(float scale) {
return (uint32_t)ceilf(scale) + 1;
}
//TCNN_INTERNAL_BEGIN
template <uint32_t N_DIMS>
__device__ __forceinline__ uint32_t permuto_index(
const uvec<N_DIMS>& key,
const uint32_t hashmap_size
) {
return (base_convert_hash<N_DIMS>(key) % hashmap_size);
}
template <uint32_t N_DIMS>
__device__ __forceinline__ void permuto_elevate(
const float* __restrict__ pos, // [N_DIMS]
const float* __restrict__ scales_per_dim, // [N_DIMS]
const float* __restrict__ shifts_per_dim, // [N_DIMS]
float* __restrict__ elevated // [N_DIMS+1]
) {
// Elevate d-dimension vector to (d+1)-dimension homogeneous vector on hyperplane H_d
// a) The sum of the components of `elevated` is zero, ensuring it within hyperplane H_d
// b) The magnitudes of the components of `elevated` are similar to each other.
float sum = 0;
TCNN_PRAGMA_UNROLL
for (int dim = N_DIMS; dim > 0; dim--) {
float cf = (pos[dim-1] + shifts_per_dim[dim-1]) * scales_per_dim[dim-1];
elevated[dim] = sum - (float)dim * cf;
sum += cf;
}
elevated[0] = sum;
}
template <uint32_t N_DIMS>
__device__ __forceinline__ void permuto_find_rem0(
const float* __restrict__ elevated, // [N_DIMS+1]
int* __restrict__ rem0, // [N_DIMS+1]
int* __restrict__ rank // [N_DIMS+1]
) {
// Find the closest remainder-0 point through rounding
int sum = 0;
TCNN_PRAGMA_UNROLL
for (uint32_t dim = 0; dim <= N_DIMS; ++dim) {
// NOTE by Jianfei Guo:
// For N=N_DIMS+1 that is not a power of 2, using xxx*(1.0f/N) is significantly faster than xxx/N when --fast_math is off.
// This is because:
// a) xxx*(1.0f/N) compiles into a single floating-point multiplication instruction (mul.f32) in both PTX and SASS codes,
// b) xxx/N compiles into a floating-point division instruction (div.rn.f32) in PTX, which further converts to multiple instructions in SASS
// and largely hinders the performance.
float v = elevated[dim] * (1.0f / (N_DIMS+1));
float up = ceil(v) * (N_DIMS + 1);
float down = floor(v) * (N_DIMS + 1);
if (up - elevated[dim] < elevated[dim] - down) {
rem0[dim] = (int)up;
} else {
rem0[dim] = (int)down;
}
sum += rem0[dim];
}
sum /= (int)(N_DIMS+1);
// Find the simplex we are in and store it in rank
// (where rank describes what position coordinate i has in the sorted order of the features values)
TCNN_PRAGMA_UNROLL
for (uint32_t dim = 0; dim < N_DIMS; ++dim) {
float di = elevated[dim] - rem0[dim];
for (uint32_t other_dim = dim + 1; other_dim <= N_DIMS; ++other_dim) {
if (di < elevated[other_dim] - rem0[other_dim]) {
rank[dim]++;
} else {
rank[other_dim]++;
}
}
}
// If the point doesn't lie on the plane (sum != 0) bring it back
TCNN_PRAGMA_UNROLL
for (uint32_t dim = 0; dim <= N_DIMS; ++dim) {
rank[dim] += sum;
if (rank[dim] < 0) {
rank[dim] += (int)(N_DIMS+1);
rem0[dim] += (int)(N_DIMS+1);
} else if (rank[dim] > (int)N_DIMS) {
rank[dim] -= (int)(N_DIMS+1);
rem0[dim] -= (int)(N_DIMS+1);
}
}
}
template <uint32_t N_DIMS>
__device__ __forceinline__ void permuto_barycentric(
const float* __restrict__ elevated, // [N_DIMS+1]
const int* __restrict__ rem0, // [N_DIMS+1]
const int* __restrict__ rank, // [N_DIMS+1]
float* __restrict__ barycentric // [N_DIMS+2]
) {
// Compute the barycentric coordinates (p.10 in [Adams etal 2010])
TCNN_PRAGMA_UNROLL
for (uint32_t dim = 0; dim <= N_DIMS; ++dim) {
float delta = (elevated[dim] - rem0[dim]) * (1.0f / (N_DIMS+1));
barycentric[(int)N_DIMS - rank[dim]] += delta;
barycentric[(int)(N_DIMS + 1) - rank[dim]] -= delta;
}
// Wrap around
barycentric[0] += 1.0f + barycentric[N_DIMS + 1];
}
//TCNN_INTERNAL_END
template <typename T, uint32_t N=1>
__global__ void kernel_activation(const uint32_t num_elements, const Activation act, const T* in, T* out) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
auto frag = ((vector_fragment_t<T, N>*)in)[i];
warp_activation<T>(act, frag, frag);
((vector_fragment_t<T, N>*)out)[i] = frag;
}
// Transfer functions corresponding to activations; version without biases
template <typename T, uint32_t N=1>
__global__ void kernel_activation_backward(const uint32_t num_elements, const Activation act, const T* __restrict__ values, const T* gradients_out, T* gradients_in) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
auto frag_forward_in = ((vector_fragment_t<T, N>*)values)[i];
auto frag = ((vector_fragment_t<T, N>*)gradients_out)[i];
warp_activation_backward_in<T>(act, frag, frag_forward_in, frag);
((vector_fragment_t<T, N>*)gradients_in)[i] = frag;
}
// Transfer functions corresponding to activations, given _output_ values. Only works if the activation is invertible
template <typename T, uint32_t N=1>
__global__ void kernel_activation_backward_output(const uint32_t num_elements, const Activation act, const T* __restrict__ output_values, const T* gradients_out, T* gradients_in) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
auto frag_forward_out = ((vector_fragment_t<T, N>*)output_values)[i];
auto frag = ((vector_fragment_t<T, N>*)gradients_out)[i];
warp_activation_backward<T>(act, frag, frag_forward_out, frag);
((vector_fragment_t<T, N>*)gradients_in)[i] = frag;
}
// Expands a 10-bit integer into 30 bits
// by inserting 2 zeros after each bit.
__host__ __device__ inline uint32_t expand_bits(uint32_t v) {
v = (v * 0x00010001u) & 0xFF0000FFu;
v = (v * 0x00000101u) & 0x0F00F00Fu;
v = (v * 0x00000011u) & 0xC30C30C3u;
v = (v * 0x00000005u) & 0x49249249u;
return v;
}
// Calculates a 30-bit Morton code for the
// given 3D point located within the unit cube [0,1].
__host__ __device__ inline uint32_t morton3D(uint32_t x, uint32_t y, uint32_t z) {
uint32_t xx = expand_bits(x);
uint32_t yy = expand_bits(y);
uint32_t zz = expand_bits(z);
return xx | (yy << 1) | (zz << 2);
}
__host__ __device__ inline uint32_t morton3D_invert(uint32_t x) {
x = x & 0x49249249;
x = (x | (x >> 2)) & 0xc30c30c3;
x = (x | (x >> 4)) & 0x0f00f00f;
x = (x | (x >> 8)) & 0xff0000ff;
x = (x | (x >> 16)) & 0x0000ffff;
return x;
}
__host__ __device__ inline uint64_t expand_bits(uint64_t w) {
w &= 0x1fffff;
w = (w | w << 32) & 0x1f00000000ffff;
w = (w | w << 16) & 0x1f0000ff0000ff;
w = (w | w << 8) & 0x100f00f00f00f00f;
w = (w | w << 4) & 0x10c30c30c30c30c3;
w = (w | w << 2) & 0x1249249249249249;
return w;
}
__host__ __device__ inline uint64_t morton3D_64bit(const ivec3& p) {
return ((expand_bits((uint64_t)p.x)) | (expand_bits((uint64_t)p.y) << 1) | (expand_bits((uint64_t)p.z) << 2));
}
__device__ inline float smoothstep(float val) {
return val*val*(3.0f - 2.0f * val);
}
__device__ inline float smoothstep_derivative(float val) {
return 6*val*(1.0f - val);
}
__device__ inline float smoothstep_2nd_derivative(float val) {
return 6.0f - 12.0f * val;
}
__device__ inline float identity_fun(float val) {
return val;
}
__device__ inline float identity_derivative(float val) {
return 1.0f;
}
__device__ inline float identity_2nd_derivative(float val) {
return 0.0f;
}
template <typename F, typename FPRIME, typename FPRIMEPRIME>
__device__ inline void pos_fract(const float input, float* pos, float* pos_derivative, float* pos_2nd_derivative, uint32_t* pos_grid, float scale, F interpolation_fun, FPRIME interpolation_fun_derivative, FPRIMEPRIME interpolation_fun_2nd_derivative) {
// The offset of 0.5 causes different scales to be staggered with respect to each other, thus
// preventing spurious alignment of fractional coordinates upon integer scales (or powers thereof).
// This is mentioned in Appendix A of the "Instant Neural Graphics Primitives" paper.
// The offset can cause wraparound indexing in dense grids, which didn't negatively impact
// the approximation quality in any of our tests.
*pos = fmaf(scale, input, 0.5f);
float tmp = floorf(*pos);
*pos_grid = (uint32_t)(int)tmp;
*pos -= (float)tmp;
*pos_2nd_derivative = interpolation_fun_2nd_derivative(*pos);
*pos_derivative = interpolation_fun_derivative(*pos);
*pos = interpolation_fun(*pos);
}
template <typename F, typename FPRIME>
__device__ inline void pos_fract(const float input, float* pos, float* pos_derivative, uint32_t* pos_grid, float scale, F interpolation_fun, FPRIME interpolation_fun_derivative) {
// The offset of 0.5 causes different scales to be staggered with respect to each other, thus
// preventing spurious alignment of fractional coordinates upon integer scales (or powers thereof).
// This is mentioned in Appendix A of the "Instant Neural Graphics Primitives" paper.
// The offset can cause wraparound indexing in dense grids, which didn't negatively impact
// the approximation quality in any of our tests.
*pos = fmaf(scale, input, 0.5f);
float tmp = floorf(*pos);
*pos_grid = (uint32_t)(int)tmp;
*pos -= tmp;
*pos_derivative = interpolation_fun_derivative(*pos);
*pos = interpolation_fun(*pos);
}
template <typename F>
__device__ inline void pos_fract(const float input, float* pos, uint32_t* pos_grid, float scale, F interpolation_fun) {
// The offset of 0.5 causes different scales to be staggered with respect to each other, thus
// preventing spurious alignment of fractional coordinates upon integer scales (or powers thereof).
// This is mentioned in Appendix A of the "Instant Neural Graphics Primitives" paper.
// The offset can cause wraparound indexing in dense grids, which didn't negatively impact
// the approximation quality in any of our tests.
*pos = fmaf(scale, input, 0.5f);
float tmp = floorf(*pos);
*pos_grid = (uint32_t)(int)tmp;
*pos -= tmp;
*pos = interpolation_fun(*pos);
}
__device__ inline float weight_decay(float relative_weight_decay, float absolute_weight_decay, float weight) {
// Relative weight decay is closely related to l2 regularization, whereas absolute weight decay corresponds to l1 regularization
return (1 - relative_weight_decay) * weight - copysignf(absolute_weight_decay, weight);
}
__device__ inline float gaussian_cdf(const float x, const float inv_radius) {
return normcdff(x * inv_radius);
}
__device__ inline float gaussian_cdf_approx(const float x, const float inv_radius) {
static constexpr float MAGIC_SIGMOID_FACTOR = 1.12f / SQRT2;
return logistic(MAGIC_SIGMOID_FACTOR * x * inv_radius);
}
__device__ inline float gaussian_cdf_approx_derivative(const float result, const float inv_radius) {
static constexpr float MAGIC_SIGMOID_FACTOR = 1.12f / SQRT2;
return result * (1 - result) * MAGIC_SIGMOID_FACTOR * inv_radius;
}
__device__ inline float gaussian_pdf(const float x, const float inv_radius) {
return inv_radius * rsqrtf(2.0f * PI()) * expf(-0.5f * (x * x * inv_radius * inv_radius));
}
__device__ inline float gaussian_pdf_max_1(const float x, const float inv_radius) {
return expf(-0.5f * (x * x * inv_radius * inv_radius));
}
__device__ inline float tent(const float x, const float inv_radius) {
return fmaxf(1.0f - fabsf(x * inv_radius), 0.0f);
}
__device__ inline float tent_cdf(const float x, const float inv_radius) {
return fmaxf(0.0f, fminf(1.0f, x * inv_radius + 0.5f));
}
__host__ __device__ inline float quartic(const float x, const float inv_radius) {
const float u = x * inv_radius;
const float tmp = fmaxf(1 - u*u, 0.0f);
return ((float)15 / 16) * tmp * tmp;
}
__host__ __device__ inline float quartic_cdf_deriv(const float x, const float inv_radius) {
return quartic(x, inv_radius) * inv_radius;
}
__host__ __device__ inline float quartic_cdf(const float x, const float inv_radius) {
const float u = x * inv_radius;
const float u2 = u * u;
const float u4 = u2 * u2;
return fmaxf(0.0f, fminf(1.0f, ((float)15 / 16) * u * (1 - ((float)2 / 3) * u2 + ((float)1 / 5) * u4) + 0.5f));
}
__host__ __device__ inline uint32_t permute(uint32_t num, uint32_t size) {
const uint32_t A = 1434869437; // Large prime number
const uint32_t B = 2097192037;
return ((uint64_t)num * A + B) % size;
}
template <typename T>
__global__ void shuffle(const uint32_t n_elements, const uint32_t stride, const uint32_t seed, const T* __restrict__ in, T* __restrict__ out) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= n_elements * stride) return;
const uint32_t elem_id = i / stride;
const uint32_t member_id = i % stride;
out[i] = in[permute(elem_id + seed, n_elements) * stride + member_id];
}
template <typename T>
__global__ void fill_rollover(const uint32_t n_elements, const uint32_t stride, const uint32_t* n_input_elements_ptr, T* inout) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
const uint32_t n_input_elements = *n_input_elements_ptr;
if (i < (n_input_elements * stride) || i >= (n_elements * stride) || n_input_elements == 0) return;
T result = inout[i % (n_input_elements * stride)];
inout[i] = result;
}
template <typename T>
__global__ void fill_rollover_and_rescale(const uint32_t n_elements, const uint32_t stride, const uint32_t* n_input_elements_ptr, T* inout) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
const uint32_t n_input_elements = *n_input_elements_ptr;
if (i < (n_input_elements * stride) || i >= (n_elements * stride) || n_input_elements == 0) return;
T result = inout[i % (n_input_elements * stride)];
result = (T)((float)result * n_input_elements / n_elements);
inout[i] = result;
}
template <typename T1, typename T2, typename T3>
__global__ void add(const uint32_t num_elements, const T1* data_in_1, const T2* data_in_2, T3* data_out) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
data_out[i] = (T3)((float)data_in_1[i] + (float)data_in_2[i]);
}
template <typename T>
__global__ void add(const uint32_t num_elements, const T* __restrict__ data_in, T* __restrict__ data_in_out) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
data_in_out[i] = data_in[i] + data_in_out[i];
}
template <typename T>
__global__ void trim(const uint32_t num_elements, const uint32_t stride, const uint32_t dims, const T* __restrict__ data_in, T* __restrict__ data_out) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
uint32_t idx = i % dims;
uint32_t elem = i / dims;
data_out[i] = data_in[elem * stride + idx];
}
template <typename T>
__global__ void trim_and_cast(const uint32_t num_elements, const uint32_t stride, const uint32_t dims, const T* __restrict__ data_in, float* __restrict__ data_out) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
uint32_t idx = i % dims;
uint32_t elem = i / dims;
data_out[i] = (float)data_in[elem * stride + idx];
}
template <typename T>
__global__ void cast(const uint32_t num_elements, const float* __restrict__ full_precision, T* __restrict__ target) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
target[i] = (T)full_precision[i];
}
template <typename T>
__global__ void cast_from(const uint32_t num_elements, const T* __restrict__ precision, float* __restrict__ full_precision) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
full_precision[i] = (float)precision[i];
}
template <typename T>
__global__ void extract_dimension_pos_neg_kernel(const uint32_t num_elements, const uint32_t dim, const uint32_t fan_in, const uint32_t fan_out, const T* __restrict__ encoded, const MatrixLayout layout, float* __restrict__ output) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
const uint32_t elem_idx = i / fan_out;
const uint32_t dim_idx = i % fan_out;
const uint32_t encoded_idx = layout == MatrixLayout::AoS ? (elem_idx * fan_in + dim) : (elem_idx + dim * num_elements / fan_out);
if (fan_out == 1) {
output[i] = (float)encoded[encoded_idx];
return;
}
if (dim_idx == 0) {
output[i] = fmaxf(-(float)encoded[encoded_idx], 0.0f);
} else if (dim_idx == 1) {
output[i] = fmaxf((float)encoded[encoded_idx], 0.0f);
} else if (dim_idx == 2) {
output[i] = 0;
} else {
output[i] = 1;
}
}
template <typename T>
__global__ void mult_scalar_kernel(const uint32_t num_elements, T* __restrict__ inout, float factor) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
inout[i] = (T)((float)inout[i] * factor);
}
template <typename T>
__global__ void mult_kernel(const uint32_t num_elements, const T* factor1, const T* factor2, T* result) {
const uint32_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= num_elements) return;
result[i] = factor1[i] * factor2[i];
}
}
|