Spaces:
Build error
Build error
File size: 16,342 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file common_host.h
* @author Thomas Müller and Nikolaus Binder, NVIDIA
* @brief Common utilities that are needed by pretty much every component of this framework.
*/
#pragma once
#include <tiny-cuda-nn/common.h>
#include <fmt/format.h>
#include <array>
#include <sstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <vector>
namespace tcnn {
using namespace fmt::literals;
enum class LogSeverity {
Info,
Debug,
Warning,
Error,
Success,
};
const std::function<void(LogSeverity, const std::string&)>& log_callback();
void set_log_callback(const std::function<void(LogSeverity, const std::string&)>& callback);
template <typename... Ts>
void log(LogSeverity severity, const std::string& msg, Ts&&... args) {
log_callback()(severity, fmt::format(msg, std::forward<Ts>(args)...));
}
template <typename... Ts> void log_info(const std::string& msg, Ts&&... args) { log(LogSeverity::Info, msg, std::forward<Ts>(args)...); }
template <typename... Ts> void log_debug(const std::string& msg, Ts&&... args) { log(LogSeverity::Debug, msg, std::forward<Ts>(args)...); }
template <typename... Ts> void log_warning(const std::string& msg, Ts&&... args) { log(LogSeverity::Warning, msg, std::forward<Ts>(args)...); }
template <typename... Ts> void log_error(const std::string& msg, Ts&&... args) { log(LogSeverity::Error, msg, std::forward<Ts>(args)...); }
template <typename... Ts> void log_success(const std::string& msg, Ts&&... args) { log(LogSeverity::Success, msg, std::forward<Ts>(args)...); }
bool verbose();
void set_verbose(bool verbose);
#define CHECK_THROW(x) \
do { if (!(x)) throw std::runtime_error{FILE_LINE " check failed: " #x}; } while(0)
/// Checks the result of a cuXXXXXX call and throws an error on failure
#define CU_CHECK_THROW(x) \
do { \
CUresult _result = x; \
if (_result != CUDA_SUCCESS) { \
const char *msg; \
cuGetErrorName(_result, &msg); \
throw std::runtime_error{fmt::format(FILE_LINE " " #x " failed: {}", msg)}; \
} \
} while(0)
/// Checks the result of a cuXXXXXX call and prints an error on failure
#define CU_CHECK_PRINT(x) \
do { \
CUresult _result = x; \
if (_result != CUDA_SUCCESS) { \
const char *msg; \
cuGetErrorName(_result, &msg); \
log_error(FILE_LINE " " #x " failed: {}", msg); \
} \
} while(0)
/// Checks the result of a cudaXXXXXX call and throws an error on failure
#define CUDA_CHECK_THROW(x) \
do { \
cudaError_t _result = x; \
if (_result != cudaSuccess) \
throw std::runtime_error{fmt::format(FILE_LINE " " #x " failed: {}", cudaGetErrorString(_result))}; \
} while(0)
/// Checks the result of a cudaXXXXXX call and prints an error on failure
#define CUDA_CHECK_PRINT(x) \
do { \
cudaError_t _result = x; \
if (_result != cudaSuccess) \
log_error(FILE_LINE " " #x " failed: {}", cudaGetErrorString(_result)); \
} while(0)
/// Checks the result of optixXXXXXX call and throws an error on failure
#define OPTIX_CHECK_THROW(x) \
do { \
OptixResult _result = x; \
if (_result != OPTIX_SUCCESS) { \
throw std::runtime_error(std::string("Optix call '" #x "' failed.")); \
} \
} while(0)
/// Checks the result of a optixXXXXXX call and throws an error with a log message on failure
#define OPTIX_CHECK_THROW_LOG(x) \
do { \
OptixResult _result = x; \
const size_t sizeof_log_returned = sizeof_log; \
sizeof_log = sizeof( log ); /* reset sizeof_log for future calls */ \
if (_result != OPTIX_SUCCESS) { \
throw std::runtime_error(std::string("Optix call '" #x "' failed. Log:\n") + log + (sizeof_log_returned == sizeof_log ? "" : "<truncated>")); \
} \
} while(0)
//////////////////////////////
// Enum<->string conversion //
//////////////////////////////
Activation string_to_activation(const std::string& activation_name);
std::string to_string(Activation activation);
GridType string_to_grid_type(const std::string& grid_type);
std::string to_string(GridType grid_type);
HashType string_to_hash_type(const std::string& hash_type);
std::string to_string(HashType hash_type);
InterpolationType string_to_interpolation_type(const std::string& interpolation_type);
std::string to_string(InterpolationType interpolation_type);
ReductionType string_to_reduction_type(const std::string& reduction_type);
std::string to_string(ReductionType reduction_type);
//////////////////
// Misc helpers //
//////////////////
int cuda_runtime_version();
inline std::string cuda_runtime_version_string() {
int v = cuda_runtime_version();
return fmt::format("{}.{}", v / 1000, (v % 100) / 10);
}
int cuda_device();
void set_cuda_device(int device);
int cuda_device_count();
bool cuda_supports_virtual_memory(int device);
inline bool cuda_supports_virtual_memory() {
return cuda_supports_virtual_memory(cuda_device());
}
std::string cuda_device_name(int device);
inline std::string cuda_device_name() {
return cuda_device_name(cuda_device());
}
uint32_t cuda_compute_capability(int device);
inline uint32_t cuda_compute_capability() {
return cuda_compute_capability(cuda_device());
}
uint32_t cuda_max_supported_compute_capability();
uint32_t cuda_supported_compute_capability(int device);
inline uint32_t cuda_supported_compute_capability() {
return cuda_supported_compute_capability(cuda_device());
}
size_t cuda_max_shmem(int device);
inline size_t cuda_max_shmem() {
return cuda_max_shmem(cuda_device());
}
uint32_t cuda_max_registers(int device);
inline uint32_t cuda_max_registers() {
return cuda_max_registers(cuda_device());
}
size_t cuda_memory_granularity(int device);
inline size_t cuda_memory_granularity() {
return cuda_memory_granularity(cuda_device());
}
struct MemoryInfo {
size_t total;
size_t free;
size_t used;
};
MemoryInfo cuda_memory_info();
// Hash helpers taken from https://stackoverflow.com/a/50978188
template <typename T>
T xorshift(T n, int i) {
return n ^ (n >> i);
}
inline uint32_t distribute(uint32_t n) {
uint32_t p = 0x55555555ul; // pattern of alternating 0 and 1
uint32_t c = 3423571495ul; // random uneven integer constant;
return c * xorshift(p * xorshift(n, 16), 16);
}
inline uint64_t distribute(uint64_t n) {
uint64_t p = 0x5555555555555555ull; // pattern of alternating 0 and 1
uint64_t c = 17316035218449499591ull;// random uneven integer constant;
return c * xorshift(p * xorshift(n, 32), 32);
}
template <typename T, typename S>
constexpr typename std::enable_if<std::is_unsigned<T>::value, T>::type rotl(const T n, const S i) {
const T m = (std::numeric_limits<T>::digits - 1);
const T c = i & m;
return (n << c) | (n >> (((T)0 - c) & m)); // this is usually recognized by the compiler to mean rotation
}
template <typename T>
size_t hash_combine(std::size_t seed, const T& v) {
return rotl(seed, std::numeric_limits<size_t>::digits / 3) ^ distribute(std::hash<T>{}(v));
}
std::string generate_device_code_preamble();
std::string to_snake_case(const std::string& str);
std::vector<std::string> split(const std::string& text, const std::string& delim);
template <typename T>
std::string join(const T& components, const std::string& delim) {
std::ostringstream s;
for (const auto& component : components) {
if (&components[0] != &component) {
s << delim;
}
s << component;
}
return s.str();
}
template <typename... Ts>
std::string dfmt(uint32_t indent, const std::string& format, Ts&&... args) {
// Trim empty lines at the beginning and end of format string.
// Also re-indent the format string `indent` deep.
uint32_t input_indent = std::numeric_limits<uint32_t>::max();
uint32_t n_empty_leading = 0, n_empty_trailing = 0;
bool leading = true;
std::vector<std::string> lines = split(format, "\n");
for (const auto& line : lines) {
bool empty = true;
uint32_t line_indent = 0;
for (uint32_t i = 0; i < line.length(); ++i) {
if (empty && line[i] == '\t') {
line_indent = i+1;
} else {
empty = false;
break;
}
}
if (empty) {
if (leading) {
++n_empty_leading;
}
++n_empty_trailing;
continue;
}
n_empty_trailing = 0;
leading = false;
input_indent = std::min(input_indent, line_indent);
}
if (input_indent == std::numeric_limits<uint32_t>::max()) {
return "";
}
lines.erase(lines.end() - n_empty_trailing, lines.end());
lines.erase(lines.begin(), lines.begin() + n_empty_leading);
for (auto& line : lines) {
if (line.length() >= input_indent) {
line = line.substr(input_indent);
line = line.insert(0, indent, '\t');
}
}
return fmt::format(join(lines, "\n"), std::forward<Ts>(args)...);
}
std::string to_lower(std::string str);
std::string to_upper(std::string str);
inline bool equals_case_insensitive(const std::string& str1, const std::string& str2) {
return to_lower(str1) == to_lower(str2);
}
struct CaseInsensitiveHash { size_t operator()(const std::string& v) const { return std::hash<std::string>{}(to_lower(v)); }};
struct CaseInsensitiveEqual { bool operator()(const std::string& l, const std::string& r) const { return equals_case_insensitive(l, r); }};
template <typename T>
using ci_hashmap = std::unordered_map<std::string, T, CaseInsensitiveHash, CaseInsensitiveEqual>;
template <typename T>
std::string type_to_string();
template <typename T, uint32_t N, size_t A>
std::string to_string(const tvec<T, N, A>& v) {
return fmt::format("tvec<{}, {}, {}>({})", type_to_string<T>(), N, A, join(v, ", "));
}
inline std::string bytes_to_string(size_t bytes) {
std::array<std::string, 7> suffixes = {{ "B", "KB", "MB", "GB", "TB", "PB", "EB" }};
double count = (double)bytes;
uint32_t i = 0;
for (; i < suffixes.size() && count >= 1024; ++i) {
count /= 1024;
}
std::ostringstream oss;
oss.precision(3);
oss << count << " " << suffixes[i];
return oss.str();
}
inline bool is_pot(uint32_t num, uint32_t* log2 = nullptr) {
if (log2) *log2 = 0;
if (num > 0) {
while (num % 2 == 0) {
num /= 2;
if (log2) ++*log2;
}
if (num == 1) {
return true;
}
}
return false;
}
inline uint32_t powi(uint32_t base, uint32_t exponent) {
uint32_t result = 1;
for (uint32_t i = 0; i < exponent; ++i) {
result *= base;
}
return result;
}
class ScopeGuard {
public:
ScopeGuard() = default;
ScopeGuard(const std::function<void()>& callback) : m_callback{callback} {}
ScopeGuard(std::function<void()>&& callback) : m_callback{std::move(callback)} {}
ScopeGuard& operator=(const ScopeGuard& other) = delete;
ScopeGuard(const ScopeGuard& other) = delete;
ScopeGuard& operator=(ScopeGuard&& other) { std::swap(m_callback, other.m_callback); return *this; }
ScopeGuard(ScopeGuard&& other) { *this = std::move(other); }
~ScopeGuard() { if (m_callback) { m_callback(); } }
void disarm() {
m_callback = {};
}
private:
std::function<void()> m_callback;
};
template <typename T>
class Lazy {
public:
template <typename F>
T& get(F&& generator) {
if (!m_val) {
m_val = generator();
}
return m_val;
}
private:
T m_val;
};
#if defined(__CUDACC__) || (defined(__clang__) && defined(__CUDA__))
template <typename K, typename T, typename ... Types>
inline void linear_kernel(K kernel, uint32_t shmem_size, cudaStream_t stream, T n_elements, Types ... args) {
if (n_elements <= 0) {
return;
}
kernel<<<n_blocks_linear(n_elements), N_THREADS_LINEAR, shmem_size, stream>>>(n_elements, args...);
}
template <typename F>
__global__ void parallel_for_kernel(const size_t n_elements, F fun) {
const size_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= n_elements) return;
fun(i);
}
template <typename F>
inline void parallel_for_gpu(uint32_t shmem_size, cudaStream_t stream, size_t n_elements, F&& fun) {
if (n_elements <= 0) {
return;
}
parallel_for_kernel<F><<<n_blocks_linear(n_elements), N_THREADS_LINEAR, shmem_size, stream>>>(n_elements, fun);
}
template <typename F>
inline void parallel_for_gpu(cudaStream_t stream, size_t n_elements, F&& fun) {
parallel_for_gpu(0, stream, n_elements, std::forward<F>(fun));
}
template <typename F>
inline void parallel_for_gpu(size_t n_elements, F&& fun) {
parallel_for_gpu(nullptr, n_elements, std::forward<F>(fun));
}
template <typename F>
__global__ void parallel_for_aos_kernel(const size_t n_elements, const uint32_t n_dims, F fun) {
const size_t dim = threadIdx.x;
const size_t elem = threadIdx.y + blockIdx.x * blockDim.y;
if (dim >= n_dims) return;
if (elem >= n_elements) return;
fun(elem, dim);
}
template <typename F>
inline void parallel_for_gpu_aos(uint32_t shmem_size, cudaStream_t stream, size_t n_elements, uint32_t n_dims, F&& fun) {
if (n_elements <= 0 || n_dims <= 0) {
return;
}
const dim3 threads = { n_dims, div_round_up(N_THREADS_LINEAR, n_dims), 1 };
const size_t n_threads = threads.x * threads.y;
const dim3 blocks = { (uint32_t)div_round_up(n_elements * n_dims, n_threads), 1, 1 };
parallel_for_aos_kernel<<<blocks, threads, shmem_size, stream>>>(
n_elements, n_dims, fun
);
}
template <typename F>
inline void parallel_for_gpu_aos(cudaStream_t stream, size_t n_elements, uint32_t n_dims, F&& fun) {
parallel_for_gpu_aos(0, stream, n_elements, n_dims, std::forward<F>(fun));
}
template <typename F>
inline void parallel_for_gpu_aos(size_t n_elements, uint32_t n_dims, F&& fun) {
parallel_for_gpu_aos(nullptr, n_elements, n_dims, std::forward<F>(fun));
}
template <typename F>
__global__ void parallel_for_soa_kernel(const size_t n_elements, const uint32_t n_dims, F fun) {
const size_t elem = threadIdx.x + blockIdx.x * blockDim.x;
const size_t dim = blockIdx.y;
if (elem >= n_elements) return;
if (dim >= n_dims) return;
fun(elem, dim);
}
template <typename F>
inline void parallel_for_gpu_soa(uint32_t shmem_size, cudaStream_t stream, size_t n_elements, uint32_t n_dims, F&& fun) {
if (n_elements <= 0 || n_dims <= 0) {
return;
}
const dim3 blocks = { n_blocks_linear(n_elements), n_dims, 1 };
parallel_for_soa_kernel<<<n_blocks_linear(n_elements), N_THREADS_LINEAR, shmem_size, stream>>>(
n_elements, n_dims, fun
);
}
template <typename F>
inline void parallel_for_gpu_soa(cudaStream_t stream, size_t n_elements, uint32_t n_dims, F&& fun) {
parallel_for_gpu_soa(0, stream, n_elements, n_dims, std::forward<F>(fun));
}
template <typename F>
inline void parallel_for_gpu_soa(size_t n_elements, uint32_t n_dims, F&& fun) {
parallel_for_gpu_soa(nullptr, n_elements, n_dims, std::forward<F>(fun));
}
#endif
}
|