Spaces:
Build error
Build error
File size: 22,517 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file gpu_memory.h
* @author Thomas Müller and Nikolaus Binder, NVIDIA
* @brief Managed memory on the GPU. Like a std::vector, memory is allocated either explicitly (resize/enlarge)
* or implicitly (resize_and_copy_from_host etc). Memory is always and automatically released in the destructor.
* Also contains a GPU memory arena for light-weight stream-ordered allocations of temporary memory. The
* memory arena makes use of virtual memory when available to avoid re-allocations during progressive growing.
*/
#pragma once
#include <tiny-cuda-nn/common_host.h>
#include <tiny-cuda-nn/cuda_graph.h>
#include <cuda.h>
#include <algorithm>
#include <atomic>
#include <cstdint>
#include <stdexcept>
#include <string>
#include <tuple>
#include <unordered_map>
#include <vector>
namespace tcnn {
#define DEBUG_GUARD_SIZE 0
inline std::atomic<size_t>& total_n_bytes_allocated() {
static std::atomic<size_t> s_total_n_bytes_allocated{0};
return s_total_n_bytes_allocated;
}
/// Managed memory on the Device
template<class T>
class GPUMemory {
private:
T* m_data = nullptr;
size_t m_size = 0; // Number of elements
bool m_managed = false;
public:
using Type = T;
using View = T*;
using ConstView = const T*;
GPUMemory() {}
GPUMemory(size_t size, bool managed = false) : m_managed{managed} {
resize(size);
}
GPUMemory<T>& operator=(GPUMemory<T>&& other) {
std::swap(m_data, other.m_data);
std::swap(m_size, other.m_size);
std::swap(m_managed, other.m_managed);
return *this;
}
GPUMemory(GPUMemory<T>&& other) {
*this = std::move(other);
}
// Don't permit copy assignment to prevent performance accidents.
// Copy is permitted through an explicit copy constructor.
GPUMemory<T>& operator=(const GPUMemory<T>& other) = delete;
explicit GPUMemory(const GPUMemory<T>& other) {
m_managed = other.managed();
copy_from_device(other);
}
void check_guards() const {
#if DEBUG_GUARD_SIZE > 0
if (!m_data)
return;
uint8_t buf[DEBUG_GUARD_SIZE];
const uint8_t *rawptr=(const uint8_t *)m_data;
cudaMemcpy(buf, rawptr-DEBUG_GUARD_SIZE, DEBUG_GUARD_SIZE, cudaMemcpyDeviceToHost);
for (int i=0;i<DEBUG_GUARD_SIZE;++i) if (buf[i] != 0xff) {
printf("TRASH BEFORE BLOCK offset %d data %p, read 0x%02x expected 0xff!\n", i, m_data, buf[i] );
break;
}
cudaMemcpy(buf, rawptr+m_size*sizeof(T), DEBUG_GUARD_SIZE, cudaMemcpyDeviceToHost);
for (int i=0;i<DEBUG_GUARD_SIZE;++i) if (buf[i] != 0xfe) {
printf("TRASH AFTER BLOCK offset %d data %p, read 0x%02x expected 0xfe!\n", i, m_data, buf[i] );
break;
}
#endif
}
void allocate_memory(size_t n_bytes) {
if (n_bytes == 0) {
return;
}
log_debug("GPUMemory: allocating {}.", bytes_to_string(n_bytes));
uint8_t* rawptr = nullptr;
if (m_managed) {
CUDA_CHECK_THROW(cudaMallocManaged((void**)&rawptr, n_bytes+DEBUG_GUARD_SIZE*2));
} else {
CUDA_CHECK_THROW(cudaMalloc((void**)&rawptr, n_bytes+DEBUG_GUARD_SIZE*2));
}
#if DEBUG_GUARD_SIZE > 0
CUDA_CHECK_THROW(cudaMemset(rawptr, 0xff, DEBUG_GUARD_SIZE));
CUDA_CHECK_THROW(cudaMemset(rawptr + n_bytes + DEBUG_GUARD_SIZE, 0xfe, DEBUG_GUARD_SIZE));
#endif
if (rawptr) rawptr += DEBUG_GUARD_SIZE;
m_data = (T*)(rawptr);
total_n_bytes_allocated() += n_bytes;
}
void free_memory() {
if (!m_data) {
return;
}
uint8_t *rawptr = (uint8_t*)m_data;
if (rawptr) rawptr -= DEBUG_GUARD_SIZE;
CUDA_CHECK_THROW(cudaFree(rawptr));
total_n_bytes_allocated() -= get_bytes();
m_data = nullptr;
m_size = 0;
}
/// Frees memory again
TCNN_HOST_DEVICE ~GPUMemory() {
#ifndef __CUDA_ARCH__
try {
if (m_data) {
free_memory();
m_size = 0;
}
} catch (const std::runtime_error& error) {
// Don't need to report on memory-free problems when the driver is shutting down.
if (std::string{error.what()}.find("driver shutting down") == std::string::npos) {
log_warning("Could not free memory: {}", error.what());
}
}
#endif
}
/** @name Resizing/enlargement
* @{
*/
/// Resizes the array to the exact new size, even if it is already larger
void resize(const size_t size) {
if (m_size != size) {
if (m_size) {
try {
free_memory();
} catch (const std::runtime_error& error) {
throw std::runtime_error{fmt::format("Could not free memory: {}", error.what())};
}
}
if (size > 0) {
try {
allocate_memory(size * sizeof(T));
} catch (const std::runtime_error& error) {
throw std::runtime_error{fmt::format("Could not allocate memory: {}", error.what())};
}
}
m_size = size;
}
}
/// Enlarges the array if its size is smaller
void enlarge(const size_t size) {
if (size > m_size) {
resize(size);
}
}
/** @} */
/** @name Memset
* @{
*/
/// Sets the memory of the first num_elements to value
void memset(const int value, const size_t num_elements, const size_t offset = 0) {
if (num_elements + offset > m_size) {
throw std::runtime_error{fmt::format("Could not set memory: Number of elements {}+{} larger than allocated memory {}.", num_elements, offset, m_size)};
}
CUDA_CHECK_THROW(cudaMemset(m_data + offset, value, num_elements * sizeof(T)));
}
/// Sets the memory of the all elements to value
void memset(const int value) {
memset(value, m_size);
}
/** @} */
/** @name Copy operations
* @{
*/
/// Copy data of num_elements from the raw pointer on the host
void copy_from_host(const T* host_data, const size_t num_elements) {
CUDA_CHECK_THROW(cudaMemcpy(data(), host_data, num_elements * sizeof(T), cudaMemcpyHostToDevice));
}
/// Copy num_elements from the host vector
void copy_from_host(const std::vector<T>& data, const size_t num_elements) {
if (data.size() < num_elements) {
throw std::runtime_error{fmt::format("Trying to copy {} elements, but vector size is only {}.", num_elements, data.size())};
}
copy_from_host(data.data(), num_elements);
}
/// Copies data from the raw host pointer to fill the entire array
void copy_from_host(const T* data) {
copy_from_host(data, m_size);
}
/// Copies num_elements of data from the raw host pointer after enlarging the array so that everything fits in
void enlarge_and_copy_from_host(const T* data, const size_t num_elements) {
enlarge(num_elements);
copy_from_host(data, num_elements);
}
/// Copies num_elements from the host vector after enlarging the array so that everything fits in
void enlarge_and_copy_from_host(const std::vector<T>& data, const size_t num_elements) {
enlarge_and_copy_from_host(data.data(), num_elements);
}
/// Copies the entire host vector after enlarging the array so that everything fits in
void enlarge_and_copy_from_host(const std::vector<T>& data) {
enlarge_and_copy_from_host(data.data(), data.size());
}
/// Copies num_elements of data from the raw host pointer after resizing the array
void resize_and_copy_from_host(const T* data, const size_t num_elements) {
resize(num_elements);
copy_from_host(data, num_elements);
}
/// Copies num_elements from the host vector after resizing the array
void resize_and_copy_from_host(const std::vector<T>& data, const size_t num_elements) {
resize_and_copy_from_host(data.data(), num_elements);
}
/// Copies the entire host vector after resizing the array
void resize_and_copy_from_host(const std::vector<T>& data) {
resize_and_copy_from_host(data.data(), data.size());
}
/// Copies the entire host vector to the device. Fails if there is not enough space available.
void copy_from_host(const std::vector<T>& data) {
if (data.size() < m_size) {
throw std::runtime_error{fmt::format("Trying to copy {} elements, but vector size is only {}.", m_size, data.size())};
}
copy_from_host(data.data(), m_size);
}
/// Copies num_elements of data from the raw host pointer to the device. Fails if there is not enough space available.
void copy_to_host(T* host_data, const size_t num_elements) const {
if (num_elements > m_size) {
throw std::runtime_error{fmt::format("Trying to copy {} elements, but memory size is only {}.", num_elements, m_size)};
}
CUDA_CHECK_THROW(cudaMemcpy(host_data, data(), num_elements * sizeof(T), cudaMemcpyDeviceToHost));
}
/// Copies num_elements from the device to a vector on the host
void copy_to_host(std::vector<T>& data, const size_t num_elements) const {
if (data.size() < num_elements) {
throw std::runtime_error{fmt::format("Trying to copy {} elements, but vector size is only {}.", num_elements, data.size())};
}
copy_to_host(data.data(), num_elements);
}
/// Copies num_elements from the device to a raw pointer on the host
void copy_to_host(T* data) const {
copy_to_host(data, m_size);
}
/// Copies all elements from the device to a vector on the host
void copy_to_host(std::vector<T>& data) const {
if (data.size() < m_size) {
throw std::runtime_error{fmt::format("Trying to copy {} elements, but vector size is only {}", m_size, data.size())};
}
copy_to_host(data.data(), m_size);
}
/// Copies size elements from another device array to this one, automatically resizing it
void copy_from_device(const GPUMemory<T>& other, const size_t size) {
if (size == 0) {
return;
}
if (m_size < size) {
resize(size);
}
CUDA_CHECK_THROW(cudaMemcpy(m_data, other.m_data, size * sizeof(T), cudaMemcpyDeviceToDevice));
}
/// Copies data from another device array to this one, automatically resizing it
void copy_from_device(const GPUMemory<T> &other) {
copy_from_device(other, other.m_size);
}
// Created an (owned) copy of the data
GPUMemory<T> copy(size_t size) const {
GPUMemory<T> result{size};
result.copy_from_device(*this);
return result;
}
GPUMemory<T> copy() const {
return copy(m_size);
}
T* data() const {
check_guards();
return m_data;
}
View view() const { return data(); }
ConstView const_view() const { return view(); }
bool managed() const {
return m_managed;
}
T& at(size_t idx) const {
if (!m_managed) {
throw std::runtime_error{fmt::format("GPUMemory::at() not permitted if not managed.")};
}
if (idx > m_size) {
throw std::runtime_error{fmt::format("GPUMemory out of bounds: idx={} size={}", idx, m_size)};
}
return m_data[idx];
}
TCNN_HOST_DEVICE T& operator[](size_t idx) const {
#ifdef DEBUG_BUFFER_OVERRUN
if (idx > m_size) {
printf("WARNING: buffer overrun of %p at idx %zu\n", idx);
}
#endif
return m_data[idx];
}
TCNN_HOST_DEVICE T& operator[](uint32_t idx) const {
#ifdef DEBUG_BUFFER_OVERRUN
if (idx > m_size) {
printf("WARNING: buffer overrun of %p at idx %u\n", idx);
}
#endif
return m_data[idx];
}
size_t get_num_elements() const {
return m_size;
}
size_t size() const {
return get_num_elements();
}
size_t get_bytes() const {
return m_size * sizeof(T);
}
size_t n_bytes() const {
return get_bytes();
}
size_t bytes() const {
return get_bytes();
}
};
class GPUMemoryArena {
public:
GPUMemoryArena() {
m_device = cuda_device();
// Align memory at least by a cache line (128 bytes).
m_alignment = (size_t)128;
m_max_size = previous_multiple(cuda_memory_info().total, cuda_memory_granularity());
m_free_intervals = {{0, m_max_size}};
// Reserve an address range that would be sufficient for housing the entire
// available GPU RAM (if nothing else was using the GPU). This is unlikely
// to exhaust all available addresses (even if multiple GPUMemoryArenas are
// used simultaneously), while also ensuring that we never exhaust the
// reserved address range without running out of physical memory beforehand.
if (cuda_supports_virtual_memory() && cuMemAddressReserve(&m_base_address, m_max_size, 0, 0, 0) == CUDA_SUCCESS) {
return;
}
// Use regular memory as fallback
m_fallback_memory = std::make_shared<GPUMemory<uint8_t>>();
static bool printed_warning = false;
if (!printed_warning) {
printed_warning = true;
log_warning(
"GPUMemoryArena: GPU {} does not support virtual memory. "
"Falling back to regular allocations, which will be larger and can cause occasional stutter.",
m_device
);
}
}
GPUMemoryArena(GPUMemoryArena&& other) = default;
GPUMemoryArena(const GPUMemoryArena& other) = delete;
GPUMemoryArena& operator=(GPUMemoryArena&& other) = delete;
GPUMemoryArena& operator=(const GPUMemoryArena& other) = delete;
~GPUMemoryArena() {
if (in_use()) {
log_warning("Attempting to free memory arena while it is still in use.");
}
try {
// Make sure we're clearing the GPU memory arena on the correct device.
int previous_device = cuda_device();
set_cuda_device(m_device);
ScopeGuard revert_device = {[&]() { set_cuda_device(previous_device); }};
CUDA_CHECK_THROW(cudaDeviceSynchronize());
if (m_base_address) {
total_n_bytes_allocated() -= m_size;
CU_CHECK_THROW(cuMemUnmap(m_base_address, m_size));
for (const auto& handle : m_handles) {
CU_CHECK_THROW(cuMemRelease(handle));
}
CU_CHECK_THROW(cuMemAddressFree(m_base_address, m_max_size));
}
} catch (const std::runtime_error& error) {
// Don't need to report on memory-free problems when the driver is shutting down.
if (std::string{error.what()}.find("driver shutting down") == std::string::npos) {
log_warning("Could not free memory arena: {}", error.what());
}
}
}
uint8_t* data() {
return m_fallback_memory ? m_fallback_memory->data() : (uint8_t*)m_base_address;
}
std::shared_ptr<GPUMemory<uint8_t>> backing_memory() {
return m_fallback_memory;
}
// Finds the smallest interval of free memory in the GPUMemoryArena that's
// large enough to hold the requested number of bytes. Then allocates
// that memory.
size_t allocate(size_t n_bytes) {
// Permitting zero-sized allocations is error prone
if (n_bytes == 0) {
n_bytes = m_alignment;
}
// Align allocations with the nearest cache line (at least the granularity of the memory allocations)
n_bytes = next_multiple(n_bytes, m_alignment);
Interval<size_t>* best_candidate = &m_free_intervals.back();
for (auto& f : m_free_intervals) {
if (f.size() >= n_bytes && f.size() < best_candidate->size()) {
best_candidate = &f;
}
}
size_t start = best_candidate->start;
// Note: the += operator can turn `best_candidate` into an empty interval, which is fine because it will
// be absorbed into adjacent free intervals in later calls to `merge_adjacent_intervals`.
m_allocated_intervals[start] = best_candidate->start += n_bytes;
enlarge(size());
return start;
}
void free(size_t start) {
if (m_allocated_intervals.count(start) == 0) {
throw std::runtime_error{"Attempted to free arena memory that was not allocated."};
}
Interval<size_t> interval = {start, m_allocated_intervals[start]};
m_allocated_intervals.erase(start);
m_free_intervals.insert(
std::upper_bound(std::begin(m_free_intervals), std::end(m_free_intervals), interval),
interval
);
merge_adjacent_intervals();
}
void enlarge(size_t n_bytes) {
if (n_bytes <= m_size) {
return;
}
if (cuda_device() != m_device) {
throw std::runtime_error{fmt::format("Attempted to use a GPUMemoryArena of device {} from the wrong device {}.", m_device, cuda_device())};
}
log_debug("GPUMemoryArena: enlarging from {} to {}", bytes_to_string(m_size), bytes_to_string(n_bytes));
if (m_fallback_memory) {
static const double GROWTH_FACTOR = 1.5;
CUDA_CHECK_THROW(cudaDeviceSynchronize());
m_size = next_multiple((size_t)(n_bytes * GROWTH_FACTOR), cuda_memory_granularity());
m_fallback_memory = std::make_shared<GPUMemory<uint8_t>>(m_fallback_memory->copy(m_size));
CUDA_CHECK_THROW(cudaDeviceSynchronize());
return;
}
size_t n_bytes_to_allocate = n_bytes - m_size;
n_bytes_to_allocate = next_multiple(n_bytes_to_allocate, cuda_memory_granularity());
CUmemAllocationProp prop = {};
prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
prop.location.id = m_device;
m_handles.emplace_back();
CU_CHECK_THROW(cuMemCreate(&m_handles.back(), n_bytes_to_allocate, &prop, 0));
CUmemAccessDesc access_desc = {};
access_desc.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
access_desc.location.id = prop.location.id;
access_desc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
CU_CHECK_THROW(cuMemMap(m_base_address + m_size, n_bytes_to_allocate, 0, m_handles.back(), 0));
CU_CHECK_THROW(cuMemSetAccess(m_base_address + m_size, n_bytes_to_allocate, &access_desc, 1));
m_size += n_bytes_to_allocate;
total_n_bytes_allocated() += n_bytes_to_allocate;
// Need to synchronize the device to make sure memory is available to all streams.
if (current_capture()) {
current_capture()->schedule_synchronize();
} else {
CUDA_CHECK_THROW(cudaDeviceSynchronize());
}
}
size_t size() const {
return m_free_intervals.back().start;
}
bool in_use() const {
return m_free_intervals.size() != 1 || m_free_intervals.front().size() != m_max_size;
}
class Allocation {
public:
Allocation() = default;
Allocation(cudaStream_t stream, size_t offset, const std::shared_ptr<GPUMemoryArena>& workspace)
: m_stream{stream}, m_data{workspace->data() + offset}, m_offset{offset}, m_workspace{workspace}, m_backing_memory{workspace->backing_memory()}
{}
~Allocation() {
if (m_workspace) {
m_workspace->free(m_offset);
}
}
Allocation(const Allocation& other) = delete;
Allocation& operator=(Allocation&& other) {
std::swap(m_stream, other.m_stream);
std::swap(m_data, other.m_data);
std::swap(m_offset, other.m_offset);
std::swap(m_workspace, other.m_workspace);
std::swap(m_backing_memory, other.m_backing_memory);
return *this;
}
Allocation(Allocation&& other) {
*this = std::move(other);
}
uint8_t* data() {
return m_data;
}
const uint8_t* data() const {
return m_data;
}
cudaStream_t stream() const {
return m_stream;
}
private:
cudaStream_t m_stream = nullptr;
uint8_t* m_data = nullptr;
size_t m_offset = 0;
std::shared_ptr<GPUMemoryArena> m_workspace = nullptr;
// Backing GPUMemory (if backed by a GPUMemory). Ensures that
// the backing memory is only freed once all allocations that
// use it were destroyed.
std::shared_ptr<GPUMemory<uint8_t>> m_backing_memory = nullptr;
};
private:
void merge_adjacent_intervals() {
size_t j = 0;
for (size_t i = 1; i < m_free_intervals.size(); ++i) {
Interval<size_t>& prev = m_free_intervals[j];
Interval<size_t>& cur = m_free_intervals[i];
if (prev.end == cur.start) {
prev.end = cur.end;
} else {
++j;
m_free_intervals[j] = m_free_intervals[i];
}
}
m_free_intervals.resize(j+1);
}
std::vector<Interval<size_t>> m_free_intervals;
std::unordered_map<size_t, size_t> m_allocated_intervals;
int m_device = 0;
CUdeviceptr m_base_address = {};
size_t m_size = 0;
std::vector<CUmemGenericAllocationHandle> m_handles;
// Used then virtual memory isn't supported.
// Requires more storage + memcpy, but is more portable.
std::shared_ptr<GPUMemory<uint8_t>> m_fallback_memory = nullptr;
size_t m_alignment;
size_t m_max_size;
};
inline std::unordered_map<cudaStream_t, std::shared_ptr<GPUMemoryArena>>& stream_gpu_memory_arenas() {
static auto* stream_gpu_memory_arenas = new std::unordered_map<cudaStream_t, std::shared_ptr<GPUMemoryArena>>{};
return *stream_gpu_memory_arenas;
}
inline std::unordered_map<int, std::shared_ptr<GPUMemoryArena>>& global_gpu_memory_arenas() {
static auto* global_gpu_memory_arenas = new std::unordered_map<int, std::shared_ptr<GPUMemoryArena>>{};
return *global_gpu_memory_arenas;
}
inline GPUMemoryArena::Allocation allocate_workspace(cudaStream_t stream, size_t n_bytes) {
if (n_bytes == 0) {
// Return a null allocation if no bytes were requested.
return {};
}
auto& arena = stream ? stream_gpu_memory_arenas()[stream] : global_gpu_memory_arenas()[cuda_device()];
if (!arena) {
arena = std::make_shared<GPUMemoryArena>();
}
return GPUMemoryArena::Allocation{stream, arena->allocate(n_bytes), arena};
}
inline size_t align_to_cacheline(size_t bytes) {
return next_multiple(bytes, (size_t)128);
}
template <typename First, typename FirstSize>
std::tuple<First*> allocate_workspace_and_distribute(cudaStream_t stream, GPUMemoryArena::Allocation* alloc, size_t offset, FirstSize first_size) {
*alloc = allocate_workspace(stream, offset + align_to_cacheline(first_size * sizeof(First)));
return std::make_tuple<First*>((First*)(alloc->data() + offset));
}
template <typename First, typename ...Types, typename FirstSize, typename ...Sizes, std::enable_if_t<sizeof...(Types) != 0 && sizeof...(Types) == sizeof...(Sizes), int> = 0>
std::tuple<First*, Types*...> allocate_workspace_and_distribute(cudaStream_t stream, GPUMemoryArena::Allocation* alloc, size_t offset, FirstSize first_size, Sizes... sizes) {
auto nested = allocate_workspace_and_distribute<Types...>(stream, alloc, offset + align_to_cacheline(first_size * sizeof(First)), sizes...);
return std::tuple_cat(std::make_tuple<First*>((First*)(alloc->data() + offset)), nested);
}
template <typename ...Types, typename ...Sizes, std::enable_if_t<sizeof...(Types) == sizeof...(Sizes), int> = 0>
std::tuple<Types*...> allocate_workspace_and_distribute(cudaStream_t stream, GPUMemoryArena::Allocation* alloc, Sizes... sizes) {
return allocate_workspace_and_distribute<Types...>(stream, alloc, (size_t)0, sizes...);
}
inline void free_gpu_memory_arena(cudaStream_t stream) {
if (stream) {
stream_gpu_memory_arenas().erase(stream);
} else {
global_gpu_memory_arenas().erase(cuda_device());
}
}
inline void free_all_gpu_memory_arenas() {
stream_gpu_memory_arenas().clear();
global_gpu_memory_arenas().clear();
}
}
|