Spaces:
Build error
Build error
File size: 8,125 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import code
import glob
import imageio
import numpy as np
import os
from pathlib import PurePosixPath
from scipy.ndimage.filters import convolve1d
import struct
import sys
from constants import *
# Search for pyngp in the build folder.
sys.path += [os.path.dirname(pyd) for pyd in glob.iglob(os.path.join(ROOT_DIR, "build*", "**/*.pyd"), recursive=True)]
sys.path += [os.path.dirname(pyd) for pyd in glob.iglob(os.path.join(ROOT_DIR, "build*", "**/*.so"), recursive=True)]
def repl(testbed):
print("-------------------\npress Ctrl-Z to return to gui\n---------------------------")
code.InteractiveConsole(locals=locals()).interact()
print("------- returning to gui...")
def mse2psnr(x): return -10.*np.log(x)/np.log(10.)
def sanitize_path(path):
return str(PurePosixPath(path.relative_to(PAPER_FOLDER)))
# from https://stackoverflow.com/questions/31638651/how-can-i-draw-lines-into-numpy-arrays
def trapez(y,y0,w):
return np.clip(np.minimum(y+1+w/2-y0, -y+1+w/2+y0),0,1)
def weighted_line(r0, c0, r1, c1, w, rmin=0, rmax=np.inf):
# The algorithm below works fine if c1 >= c0 and c1-c0 >= abs(r1-r0).
# If either of these cases are violated, do some switches.
if abs(c1-c0) < abs(r1-r0):
# Switch x and y, and switch again when returning.
xx, yy, val = weighted_line(c0, r0, c1, r1, w, rmin=rmin, rmax=rmax)
return (yy, xx, val)
# At this point we know that the distance in columns (x) is greater
# than that in rows (y). Possibly one more switch if c0 > c1.
if c0 > c1:
return weighted_line(r1, c1, r0, c0, w, rmin=rmin, rmax=rmax)
# The following is now always < 1 in abs
slope = (r1-r0) / (c1-c0)
# Adjust weight by the slope
w *= np.sqrt(1+np.abs(slope)) / 2
# We write y as a function of x, because the slope is always <= 1
# (in absolute value)
x = np.arange(c0, c1+1, dtype=float)
y = x * slope + (c1*r0-c0*r1) / (c1-c0)
# Now instead of 2 values for y, we have 2*np.ceil(w/2).
# All values are 1 except the upmost and bottommost.
thickness = np.ceil(w/2)
yy = (np.floor(y).reshape(-1,1) + np.arange(-thickness-1,thickness+2).reshape(1,-1))
xx = np.repeat(x, yy.shape[1])
vals = trapez(yy, y.reshape(-1,1), w).flatten()
yy = yy.flatten()
# Exclude useless parts and those outside of the interval
# to avoid parts outside of the picture
mask = np.logical_and.reduce((yy >= rmin, yy < rmax, vals > 0))
return (yy[mask].astype(int), xx[mask].astype(int), vals[mask])
def diagonally_truncated_mask(shape, x_threshold, angle):
result = np.zeros(shape, dtype=bool)
for x in range(shape[1]):
for y in range(shape[0]):
thres = x_threshold * shape[1] - (angle * shape[0] / 2) + y * angle
result[y, x, ...] = x < thres
return result
def diagonally_combine_two_images(img1, img2, x_threshold, angle, gap=0, color=1):
if img2.shape != img1.shape:
raise ValueError(f"img1 and img2 must have the same shape; {img1.shape} vs {img2.shape}")
mask = diagonally_truncated_mask(img1.shape, x_threshold, angle)
result = img2.copy()
result[mask] = img1[mask]
if gap > 0:
rr, cc, val = weighted_line(0, int(x_threshold * img1.shape[1] - (angle * img1.shape[0] / 2)), img1.shape[0]-1, int(x_threshold * img1.shape[1] + (angle * img1.shape[0] / 2)), gap)
result[rr, cc, :] = result[rr, cc, :] * (1 - val[...,np.newaxis]) + val[...,np.newaxis] * color
return result
def diagonally_combine_images(images, x_thresholds, angle, gap=0, color=1):
result = images[0]
for img, thres in zip(images[1:], x_thresholds):
result = diagonally_combine_two_images(result, img, thres, angle, gap, color)
return result
def write_image_imageio(img_file, img, quality):
img = (np.clip(img, 0.0, 1.0) * 255.0 + 0.5).astype(np.uint8)
kwargs = {}
if os.path.splitext(img_file)[1].lower() in [".jpg", ".jpeg"]:
if img.ndim >= 3 and img.shape[2] > 3:
img = img[:,:,:3]
kwargs["quality"] = quality
kwargs["subsampling"] = 0
imageio.imwrite(img_file, img, **kwargs)
def read_image_imageio(img_file):
img = imageio.imread(img_file)
img = np.asarray(img).astype(np.float32)
if len(img.shape) == 2:
img = img[:,:,np.newaxis]
return img / 255.0
def srgb_to_linear(img):
limit = 0.04045
return np.where(img > limit, np.power((img + 0.055) / 1.055, 2.4), img / 12.92)
def linear_to_srgb(img):
limit = 0.0031308
return np.where(img > limit, 1.055 * (img ** (1.0 / 2.4)) - 0.055, 12.92 * img)
def read_image(file):
if os.path.splitext(file)[1] == ".bin":
with open(file, "rb") as f:
bytes = f.read()
h, w = struct.unpack("ii", bytes[:8])
img = np.frombuffer(bytes, dtype=np.float16, count=h*w*4, offset=8).astype(np.float32).reshape([h, w, 4])
else:
img = read_image_imageio(file)
if img.shape[2] == 4:
img[...,0:3] = srgb_to_linear(img[...,0:3])
# Premultiply alpha
img[...,0:3] *= img[...,3:4]
else:
img = srgb_to_linear(img)
return img
def write_image(file, img, quality=95):
if os.path.splitext(file)[1] == ".bin":
if img.shape[2] < 4:
img = np.dstack((img, np.ones([img.shape[0], img.shape[1], 4 - img.shape[2]])))
with open(file, "wb") as f:
f.write(struct.pack("ii", img.shape[0], img.shape[1]))
f.write(img.astype(np.float16).tobytes())
else:
if img.shape[2] == 4:
img = np.copy(img)
# Unmultiply alpha
img[...,0:3] = np.divide(img[...,0:3], img[...,3:4], out=np.zeros_like(img[...,0:3]), where=img[...,3:4] != 0)
img[...,0:3] = linear_to_srgb(img[...,0:3])
else:
img = linear_to_srgb(img)
write_image_imageio(file, img, quality)
def trim(error, skip=0.000001):
error = np.sort(error.flatten())
size = error.size
skip = int(skip * size)
return error[skip:size-skip].mean()
def luminance(a):
return 0.2126 * a[:,:,0] + 0.7152 * a[:,:,1] + 0.0722 * a[:,:,2]
def SSIM(a, b):
def blur(a):
k = np.array([0.120078, 0.233881, 0.292082, 0.233881, 0.120078])
x = convolve1d(a, k, axis=0)
return convolve1d(x, k, axis=1)
a = luminance(a)
b = luminance(b)
mA = blur(a)
mB = blur(b)
sA = blur(a*a) - mA**2
sB = blur(b*b) - mB**2
sAB = blur(a*b) - mA*mB
c1 = 0.01**2
c2 = 0.03**2
p1 = (2.0*mA*mB + c1)/(mA*mA + mB*mB + c1)
p2 = (2.0*sAB + c2)/(sA + sB + c2)
error = p1 * p2
return error
def L1(img, ref):
return np.abs(img - ref)
def APE(img, ref):
return L1(img, ref) / (1e-2 + ref)
def SAPE(img, ref):
return L1(img, ref) / (1e-2 + (ref + img) / 2.)
def L2(img, ref):
return (img - ref)**2
def RSE(img, ref):
return L2(img, ref) / (1e-2 + ref**2)
def rgb_mean(img):
return np.mean(img, axis=2)
def compute_error_img(metric, img, ref):
img[np.logical_not(np.isfinite(img))] = 0
img = np.maximum(img, 0.)
if metric == "MAE":
return L1(img, ref)
elif metric == "MAPE":
return APE(img, ref)
elif metric == "SMAPE":
return SAPE(img, ref)
elif metric == "MSE":
return L2(img, ref)
elif metric == "MScE":
return L2(np.clip(img, 0.0, 1.0), np.clip(ref, 0.0, 1.0))
elif metric == "MRSE":
return RSE(img, ref)
elif metric == "MtRSE":
return trim(RSE(img, ref))
elif metric == "MRScE":
return RSE(np.clip(img, 0, 100), np.clip(ref, 0, 100))
elif metric == "SSIM":
return SSIM(np.clip(img, 0.0, 1.0), np.clip(ref, 0.0, 1.0))
raise ValueError(f"Unknown metric: {metric}.")
def compute_error(metric, img, ref):
metric_map = compute_error_img(metric, img, ref)
metric_map[np.logical_not(np.isfinite(metric_map))] = 0
if len(metric_map.shape) == 3:
metric_map = np.mean(metric_map, axis=2)
mean = np.mean(metric_map)
return mean
|