Spaces:
Build error
Build error
File size: 44,300 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 |
/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file dlss.cu
* @author Thomas Müller, NVIDIA
*/
#include <neural-graphics-primitives/common_host.h>
#include <neural-graphics-primitives/dlss.h>
#include <tiny-cuda-nn/common_host.h>
#include <filesystem/path.h>
#if !defined(NGP_VULKAN) || !defined(NGP_GUI)
static_assert(false, "DLSS can only be compiled when both Vulkan and GUI support is enabled.")
#endif
#ifdef _WIN32
# include <GL/gl3w.h>
#else
# include <GL/glew.h>
#endif
#include <GLFW/glfw3.h>
#ifdef _WIN32
# include <vulkan/vulkan_win32.h>
#endif
// NGX's macro `NVSDK_NGX_FAILED` results in a change of sign, which does not affect correctness.
// Thus, suppress the corresponding warning.
#ifdef __CUDACC__
# ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
# pragma nv_diag_suppress = integer_sign_change
# else
# pragma diag_suppress = integer_sign_change
# endif
#endif
#include <nvsdk_ngx_vk.h>
#include <nvsdk_ngx_helpers.h>
#include <nvsdk_ngx_helpers_vk.h>
#include <atomic>
#include <codecvt>
#include <locale>
namespace ngp {
extern std::atomic<size_t> g_total_n_bytes_allocated;
/// Checks the result of a vkXXXXXX call and throws an error on failure
#define VK_CHECK_THROW(x) \
do { \
VkResult result = x; \
if (result != VK_SUCCESS) \
throw std::runtime_error(std::string(FILE_LINE " " #x " failed")); \
} while(0)
std::string ngx_error_string(NVSDK_NGX_Result result) {
std::wstring wstr = GetNGXResultAsString(result);
std::wstring_convert<std::codecvt_utf8<wchar_t>, wchar_t> converter;
return converter.to_bytes(wstr);
};
/// Checks the result of a NVSDK_NGX_XXXXXX call and throws an error on failure
#define NGX_CHECK_THROW(x) \
do { \
NVSDK_NGX_Result result = x; \
if (NVSDK_NGX_FAILED(result)) \
throw std::runtime_error(std::string(FILE_LINE " " #x " failed with error ") + ngx_error_string(result)); \
} while(0)
static VKAPI_ATTR VkBool32 VKAPI_CALL vk_debug_callback(
VkDebugUtilsMessageSeverityFlagBitsEXT message_severity,
VkDebugUtilsMessageTypeFlagsEXT message_type,
const VkDebugUtilsMessengerCallbackDataEXT* callback_data,
void* user_data
) {
// Ignore json files that couldn't be found... third party tools sometimes install bogus layers
// that manifest as warnings like this.
if (std::string{callback_data->pMessage}.find("Failed to open JSON file") != std::string::npos) {
return VK_FALSE;
}
if (message_severity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) {
tlog::warning() << "Vulkan error: " << callback_data->pMessage;
} else if (message_severity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT) {
tlog::warning() << "Vulkan: " << callback_data->pMessage;
} else {
tlog::info() << "Vulkan: " << callback_data->pMessage;
}
return VK_FALSE;
}
std::set<std::string> vk_supported_instance_layers() {
uint32_t count = 0;
VK_CHECK_THROW(vkEnumerateInstanceLayerProperties(&count, nullptr));
std::vector<VkLayerProperties> layer_properties(count);
VK_CHECK_THROW(vkEnumerateInstanceLayerProperties(&count, layer_properties.data()));
std::set<std::string> layers;
for (auto& l : layer_properties) {
layers.insert(l.layerName);
}
return layers;
}
std::set<std::string> vk_supported_device_layers(VkPhysicalDevice device) {
uint32_t count = 0;
VK_CHECK_THROW(vkEnumerateDeviceLayerProperties(device, &count, nullptr));
std::vector<VkLayerProperties> layer_properties(count);
VK_CHECK_THROW(vkEnumerateDeviceLayerProperties(device, &count, layer_properties.data()));
std::set<std::string> layers;
for (auto& l : layer_properties) {
layers.insert(l.layerName);
}
return layers;
}
std::set<std::string> vk_supported_instance_extensions(const char* layer_name) {
uint32_t count = 0;
VK_CHECK_THROW(vkEnumerateInstanceExtensionProperties(layer_name, &count, nullptr));
std::vector<VkExtensionProperties> extension_properties(count);
VK_CHECK_THROW(vkEnumerateInstanceExtensionProperties(layer_name, &count, extension_properties.data()));
std::set<std::string> extensions;
for (auto& e : extension_properties) {
extensions.insert(e.extensionName);
}
return extensions;
}
std::set<std::string> vk_supported_device_extensions(VkPhysicalDevice device, const char* layer_name) {
uint32_t count = 0;
VK_CHECK_THROW(vkEnumerateDeviceExtensionProperties(device, layer_name, &count, nullptr));
std::vector<VkExtensionProperties> extension_properties(count);
VK_CHECK_THROW(vkEnumerateDeviceExtensionProperties(device, layer_name, &count, extension_properties.data()));
std::set<std::string> extensions;
for (auto& e : extension_properties) {
extensions.insert(e.extensionName);
}
return extensions;
}
class VulkanAndNgx : public IDlssProvider, public std::enable_shared_from_this<VulkanAndNgx> {
public:
VulkanAndNgx() {
ScopeGuard cleanup_guard{[&]() { clear(); }};
if (!glfwVulkanSupported()) {
throw std::runtime_error{"!glfwVulkanSupported()"};
}
// -------------------------------
// Vulkan Instance
// -------------------------------
VkApplicationInfo app_info{};
app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
app_info.pApplicationName = "NGP";
app_info.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
app_info.pEngineName = "No engine";
app_info.engineVersion = VK_MAKE_VERSION(1, 0, 0);
app_info.apiVersion = VK_API_VERSION_1_0;
VkInstanceCreateInfo instance_create_info = {};
instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instance_create_info.pApplicationInfo = &app_info;
std::vector<const char*> instance_extensions;
std::vector<const char*> device_extensions;
uint32_t n_ngx_instance_extensions = 0;
const char** ngx_instance_extensions;
uint32_t n_ngx_device_extensions = 0;
const char** ngx_device_extensions;
NVSDK_NGX_VULKAN_RequiredExtensions(&n_ngx_instance_extensions, &ngx_instance_extensions, &n_ngx_device_extensions, &ngx_device_extensions);
for (uint32_t i = 0; i < n_ngx_instance_extensions; ++i) {
instance_extensions.emplace_back(ngx_instance_extensions[i]);
}
instance_extensions.emplace_back(VK_KHR_DEVICE_GROUP_CREATION_EXTENSION_NAME);
instance_extensions.emplace_back(VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME);
instance_extensions.emplace_back(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME);
instance_extensions.emplace_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
auto supported_instance_layers = vk_supported_instance_layers();
const char* validation_layer_name = "VK_LAYER_KHRONOS_validation";
bool instance_validation_layer_enabled = supported_instance_layers.count(validation_layer_name) > 0;
if (!instance_validation_layer_enabled) {
tlog::warning() << "Vulkan instance validation layer is not available. Vulkan errors will be difficult to diagnose.";
}
std::vector<const char*> instance_layers;
if (instance_validation_layer_enabled) {
instance_layers.emplace_back(validation_layer_name);
}
instance_create_info.enabledLayerCount = static_cast<uint32_t>(instance_layers.size());
instance_create_info.ppEnabledLayerNames = instance_layers.empty() ? nullptr : instance_layers.data();
if (instance_validation_layer_enabled) {
instance_extensions.emplace_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
}
auto supported_instance_extensions = vk_supported_instance_extensions(nullptr);
for (const auto& e : instance_extensions) {
if (supported_instance_extensions.count(e) == 0) {
throw std::runtime_error{fmt::format("Required instance extension '{}' is not supported.", e)};
}
}
instance_create_info.enabledExtensionCount = (uint32_t)instance_extensions.size();
instance_create_info.ppEnabledExtensionNames = instance_extensions.data();
VkDebugUtilsMessengerCreateInfoEXT debug_messenger_create_info = {};
debug_messenger_create_info.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
debug_messenger_create_info.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
debug_messenger_create_info.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
debug_messenger_create_info.pfnUserCallback = vk_debug_callback;
debug_messenger_create_info.pUserData = nullptr;
if (instance_validation_layer_enabled) {
instance_create_info.pNext = &debug_messenger_create_info;
}
VK_CHECK_THROW(vkCreateInstance(&instance_create_info, nullptr, &m_vk_instance));
if (instance_validation_layer_enabled) {
auto CreateDebugUtilsMessengerEXT = [](VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) {
auto func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
if (func != nullptr) {
return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
} else {
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
};
if (CreateDebugUtilsMessengerEXT(m_vk_instance, &debug_messenger_create_info, nullptr, &m_vk_debug_messenger) != VK_SUCCESS) {
tlog::warning() << "Vulkan: could not initialize debug messenger.";
}
}
// -------------------------------
// Vulkan Physical Device
// -------------------------------
uint32_t n_devices = 0;
vkEnumeratePhysicalDevices(m_vk_instance, &n_devices, nullptr);
if (n_devices == 0) {
throw std::runtime_error{"Failed to find GPUs with Vulkan support."};
}
std::vector<VkPhysicalDevice> devices(n_devices);
vkEnumeratePhysicalDevices(m_vk_instance, &n_devices, devices.data());
struct QueueFamilyIndices {
int graphics_family = -1;
int compute_family = -1;
int transfer_family = -1;
int all_family = -1;
};
auto find_queue_families = [](VkPhysicalDevice device) {
QueueFamilyIndices indices;
uint32_t queue_family_count = 0;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queue_family_count, nullptr);
std::vector<VkQueueFamilyProperties> queue_families(queue_family_count);
vkGetPhysicalDeviceQueueFamilyProperties(device, &queue_family_count, queue_families.data());
int i = 0;
for (const auto& queue_family : queue_families) {
if (queue_family.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
indices.graphics_family = i;
}
if (queue_family.queueFlags & VK_QUEUE_COMPUTE_BIT) {
indices.compute_family = i;
}
if (queue_family.queueFlags & VK_QUEUE_TRANSFER_BIT) {
indices.transfer_family = i;
}
if ((queue_family.queueFlags & VK_QUEUE_GRAPHICS_BIT) && (queue_family.queueFlags & VK_QUEUE_COMPUTE_BIT) && (queue_family.queueFlags & VK_QUEUE_TRANSFER_BIT)) {
indices.all_family = i;
}
i++;
}
return indices;
};
cudaDeviceProp cuda_device_prop;
CUDA_CHECK_THROW(cudaGetDeviceProperties(&cuda_device_prop, cuda_device()));
auto is_same_as_cuda_device = [&](VkPhysicalDevice device) {
VkPhysicalDeviceIDProperties physical_device_id_properties = {};
physical_device_id_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES;
physical_device_id_properties.pNext = NULL;
VkPhysicalDeviceProperties2 physical_device_properties = {};
physical_device_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
physical_device_properties.pNext = &physical_device_id_properties;
vkGetPhysicalDeviceProperties2(device, &physical_device_properties);
return !memcmp(&cuda_device_prop.uuid, physical_device_id_properties.deviceUUID, VK_UUID_SIZE) && find_queue_families(device).all_family >= 0;
};
uint32_t device_id = 0;
for (uint32_t i = 0; i < n_devices; ++i) {
if (is_same_as_cuda_device(devices[i])) {
m_vk_physical_device = devices[i];
device_id = i;
break;
}
}
if (m_vk_physical_device == VK_NULL_HANDLE) {
throw std::runtime_error{"Failed to find Vulkan device corresponding to CUDA device."};
}
for (uint32_t i = 0; i < n_ngx_device_extensions; ++i) {
device_extensions.emplace_back(ngx_device_extensions[i]);
}
device_extensions.emplace_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
#ifdef _WIN32
device_extensions.emplace_back(VK_KHR_EXTERNAL_MEMORY_WIN32_EXTENSION_NAME);
#else
device_extensions.emplace_back(VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME);
#endif
device_extensions.emplace_back(VK_KHR_DEVICE_GROUP_EXTENSION_NAME);
auto supported_device_extensions = vk_supported_device_extensions(m_vk_physical_device, nullptr);
for (const auto& e : device_extensions) {
if (supported_device_extensions.count(e) == 0) {
throw std::runtime_error{fmt::format("Required device extension '{}' is not supported.", e)};
}
}
// -------------------------------
// Vulkan Logical Device
// -------------------------------
VkPhysicalDeviceProperties physical_device_properties;
vkGetPhysicalDeviceProperties(m_vk_physical_device, &physical_device_properties);
QueueFamilyIndices indices = find_queue_families(m_vk_physical_device);
VkDeviceQueueCreateInfo queue_create_info{};
queue_create_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queue_create_info.queueFamilyIndex = indices.all_family;
queue_create_info.queueCount = 1;
float queue_priority = 1.0f;
queue_create_info.pQueuePriorities = &queue_priority;
VkPhysicalDeviceFeatures device_features = {};
device_features.shaderStorageImageWriteWithoutFormat = true;
VkDeviceCreateInfo device_create_info = {};
device_create_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
device_create_info.pQueueCreateInfos = &queue_create_info;
device_create_info.queueCreateInfoCount = 1;
device_create_info.pEnabledFeatures = &device_features;
device_create_info.enabledExtensionCount = (uint32_t)device_extensions.size();
device_create_info.ppEnabledExtensionNames = device_extensions.data();
#ifdef VK_EXT_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME
VkPhysicalDeviceBufferDeviceAddressFeaturesEXT buffer_device_address_feature = {};
buffer_device_address_feature.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT;
buffer_device_address_feature.bufferDeviceAddress = VK_TRUE;
device_create_info.pNext = &buffer_device_address_feature;
#else
throw std::runtime_error{"Buffer device address extension not available."};
#endif
VK_CHECK_THROW(vkCreateDevice(m_vk_physical_device, &device_create_info, nullptr, &m_vk_device));
// -----------------------------------------------
// Vulkan queue / command pool / command buffer
// -----------------------------------------------
vkGetDeviceQueue(m_vk_device, indices.all_family, 0, &m_vk_queue);
VkCommandPoolCreateInfo command_pool_info = {};
command_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
command_pool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
command_pool_info.queueFamilyIndex = indices.all_family;
VK_CHECK_THROW(vkCreateCommandPool(m_vk_device, &command_pool_info, nullptr, &m_vk_command_pool));
VkCommandBufferAllocateInfo command_buffer_alloc_info = {};
command_buffer_alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
command_buffer_alloc_info.commandPool = m_vk_command_pool;
command_buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
command_buffer_alloc_info.commandBufferCount = 1;
VK_CHECK_THROW(vkAllocateCommandBuffers(m_vk_device, &command_buffer_alloc_info, &m_vk_command_buffer));
// -------------------------------
// NGX init
// -------------------------------
std::wstring path;
#ifdef _WIN32
path = fs::path::getcwd().wstr();
#else
std::string tmp = fs::path::getcwd().str();
std::wstring_convert<std::codecvt_utf8<wchar_t>, wchar_t> converter;
path = converter.from_bytes(tmp);
#endif
NGX_CHECK_THROW(NVSDK_NGX_VULKAN_Init_with_ProjectID("ea75345e-5a42-4037-a5c9-59bf94dee157", NVSDK_NGX_ENGINE_TYPE_CUSTOM, "1.0.0", path.c_str(), m_vk_instance, m_vk_physical_device, m_vk_device));
m_ngx_initialized = true;
// -------------------------------
// Ensure DLSS capability
// -------------------------------
NGX_CHECK_THROW(NVSDK_NGX_VULKAN_GetCapabilityParameters(&m_ngx_parameters));
int needs_updated_driver = 0;
unsigned int min_driver_version_major = 0;
unsigned int min_driver_version_minor = 0;
NVSDK_NGX_Result result_updated_driver = m_ngx_parameters->Get(NVSDK_NGX_Parameter_SuperSampling_NeedsUpdatedDriver, &needs_updated_driver);
NVSDK_NGX_Result result_min_driver_version_major = m_ngx_parameters->Get(NVSDK_NGX_Parameter_SuperSampling_MinDriverVersionMajor, &min_driver_version_major);
NVSDK_NGX_Result result_min_driver_version_minor = m_ngx_parameters->Get(NVSDK_NGX_Parameter_SuperSampling_MinDriverVersionMinor, &min_driver_version_minor);
if (result_updated_driver == NVSDK_NGX_Result_Success && result_min_driver_version_major == NVSDK_NGX_Result_Success && result_min_driver_version_minor == NVSDK_NGX_Result_Success) {
if (needs_updated_driver) {
throw std::runtime_error{fmt::format("Driver too old. Minimum version required is {}.{}", min_driver_version_major, min_driver_version_minor)};
}
}
int dlss_available = 0;
NVSDK_NGX_Result ngx_result = m_ngx_parameters->Get(NVSDK_NGX_Parameter_SuperSampling_Available, &dlss_available);
if (ngx_result != NVSDK_NGX_Result_Success || !dlss_available) {
ngx_result = NVSDK_NGX_Result_Fail;
NVSDK_NGX_Parameter_GetI(m_ngx_parameters, NVSDK_NGX_Parameter_SuperSampling_FeatureInitResult, (int*)&ngx_result);
throw std::runtime_error{fmt::format("DLSS not available: {}", ngx_error_string(ngx_result))};
}
cleanup_guard.disarm();
tlog::success() << "Initialized Vulkan and NGX on GPU #" << device_id << ": " << physical_device_properties.deviceName;
}
virtual ~VulkanAndNgx() {
clear();
}
void clear() {
if (m_ngx_parameters) {
NVSDK_NGX_VULKAN_DestroyParameters(m_ngx_parameters);
m_ngx_parameters = nullptr;
}
if (m_ngx_initialized) {
NVSDK_NGX_VULKAN_Shutdown();
m_ngx_initialized = false;
}
if (m_vk_command_pool) {
vkDestroyCommandPool(m_vk_device, m_vk_command_pool, nullptr);
m_vk_command_pool = VK_NULL_HANDLE;
}
if (m_vk_device) {
vkDestroyDevice(m_vk_device, nullptr);
m_vk_device = VK_NULL_HANDLE;
}
if (m_vk_debug_messenger) {
auto DestroyDebugUtilsMessengerEXT = [](VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) {
auto func = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
if (func != nullptr) {
func(instance, debugMessenger, pAllocator);
}
};
DestroyDebugUtilsMessengerEXT(m_vk_instance, m_vk_debug_messenger, nullptr);
m_vk_debug_messenger = VK_NULL_HANDLE;
}
if (m_vk_instance) {
vkDestroyInstance(m_vk_instance, nullptr);
m_vk_instance = VK_NULL_HANDLE;
}
}
uint32_t vk_find_memory_type(uint32_t type_filter, VkMemoryPropertyFlags properties) {
VkPhysicalDeviceMemoryProperties mem_properties;
vkGetPhysicalDeviceMemoryProperties(m_vk_physical_device, &mem_properties);
for (uint32_t i = 0; i < mem_properties.memoryTypeCount; i++) {
if (type_filter & (1 << i) && (mem_properties.memoryTypes[i].propertyFlags & properties) == properties) {
return i;
}
}
throw std::runtime_error{"Failed to find suitable memory type."};
}
void vk_command_buffer_begin() {
VkCommandBufferBeginInfo begin_info = {};
begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
begin_info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
begin_info.pInheritanceInfo = nullptr;
VK_CHECK_THROW(vkBeginCommandBuffer(m_vk_command_buffer, &begin_info));
}
void vk_command_buffer_end() {
VK_CHECK_THROW(vkEndCommandBuffer(m_vk_command_buffer));
}
void vk_command_buffer_submit() {
VkSubmitInfo submit_info = { VK_STRUCTURE_TYPE_SUBMIT_INFO };
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_vk_command_buffer;
VK_CHECK_THROW(vkQueueSubmit(m_vk_queue, 1, &submit_info, VK_NULL_HANDLE));
}
void vk_synchronize() {
VK_CHECK_THROW(vkDeviceWaitIdle(m_vk_device));
}
void vk_command_buffer_submit_sync() {
vk_command_buffer_submit();
vk_synchronize();
}
void vk_command_buffer_end_and_submit_sync() {
vk_command_buffer_end();
vk_command_buffer_submit_sync();
}
const VkCommandBuffer& vk_command_buffer() const {
return m_vk_command_buffer;
}
const VkDevice& vk_device() const {
return m_vk_device;
}
NVSDK_NGX_Parameter* ngx_parameters() const {
return m_ngx_parameters;
}
size_t allocated_bytes() const override {
unsigned long long allocated_bytes = 0;
if (!m_ngx_parameters) {
return 0;
}
try {
NGX_CHECK_THROW(NGX_DLSS_GET_STATS(m_ngx_parameters, &allocated_bytes));
} catch (...) {
return 0;
}
return allocated_bytes;
}
std::unique_ptr<IDlss> init_dlss(const ivec2& out_resolution) override;
private:
VkInstance m_vk_instance = VK_NULL_HANDLE;
VkDebugUtilsMessengerEXT m_vk_debug_messenger = VK_NULL_HANDLE;
VkPhysicalDevice m_vk_physical_device = VK_NULL_HANDLE;
VkDevice m_vk_device = VK_NULL_HANDLE;
VkQueue m_vk_queue = VK_NULL_HANDLE;
VkCommandPool m_vk_command_pool = VK_NULL_HANDLE;
VkCommandBuffer m_vk_command_buffer = VK_NULL_HANDLE;
NVSDK_NGX_Parameter* m_ngx_parameters = nullptr;
bool m_ngx_initialized = false;
};
std::shared_ptr<IDlssProvider> init_vulkan_and_ngx() {
return std::make_shared<VulkanAndNgx>();
}
class VulkanTexture {
public:
VulkanTexture(std::shared_ptr<VulkanAndNgx> vk, const ivec2& size, uint32_t n_channels) : m_vk{vk}, m_size{size}, m_n_channels{n_channels} {
ScopeGuard cleanup_guard{[&]() { clear(); }};
VkImageCreateInfo image_info{};
image_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image_info.imageType = VK_IMAGE_TYPE_2D;
image_info.extent.width = static_cast<uint32_t>(m_size.x);
image_info.extent.height = static_cast<uint32_t>(m_size.y);
image_info.extent.depth = 1;
image_info.mipLevels = 1;
image_info.arrayLayers = 1;
switch (n_channels) {
case 1: image_info.format = VK_FORMAT_R32_SFLOAT; break;
case 2: image_info.format = VK_FORMAT_R32G32_SFLOAT; break;
case 3: image_info.format = VK_FORMAT_R32G32B32_SFLOAT; break;
case 4: image_info.format = VK_FORMAT_R32G32B32A32_SFLOAT; break;
default: throw std::runtime_error{"VulkanTexture only supports 1, 2, 3, or 4 channels."};
}
image_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_info.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT;
image_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_info.flags = 0;
VkExternalMemoryImageCreateInfoKHR ext_image_info = {};
ext_image_info.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR;
#ifdef _WIN32
ext_image_info.handleTypes |= VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR;
#else
ext_image_info.handleTypes |= VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
#endif
image_info.pNext = &ext_image_info;
VK_CHECK_THROW(vkCreateImage(m_vk->vk_device(), &image_info, nullptr, &m_vk_image));
// Create device memory to back up the image
VkMemoryRequirements mem_requirements = {};
vkGetImageMemoryRequirements(m_vk->vk_device(), m_vk_image, &mem_requirements);
VkMemoryAllocateInfo mem_alloc_info = {};
mem_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_alloc_info.allocationSize = mem_requirements.size;
mem_alloc_info.memoryTypeIndex = m_vk->vk_find_memory_type(mem_requirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VkExportMemoryAllocateInfoKHR export_info = {};
export_info.sType = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR;
export_info.handleTypes = ext_image_info.handleTypes;
mem_alloc_info.pNext = &export_info;
VK_CHECK_THROW(vkAllocateMemory(m_vk->vk_device(), &mem_alloc_info, nullptr, &m_vk_device_memory));
VK_CHECK_THROW(vkBindImageMemory(m_vk->vk_device(), m_vk_image, m_vk_device_memory, 0));
m_vk->vk_command_buffer_begin();
VkImageMemoryBarrier barrier = {};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = m_vk_image;
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.subresourceRange.baseMipLevel = 0;
barrier.subresourceRange.levelCount = 1;
barrier.subresourceRange.baseArrayLayer = 0;
barrier.subresourceRange.layerCount = 1;
barrier.srcAccessMask = 0;
barrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
vkCmdPipelineBarrier(
m_vk->vk_command_buffer(),
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
0,
0, nullptr,
0, nullptr,
1, &barrier
);
m_vk->vk_command_buffer_end_and_submit_sync();
// Image view
VkImageViewCreateInfo view_info = {};
view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view_info.image = m_vk_image;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
view_info.format = image_info.format;
view_info.subresourceRange = barrier.subresourceRange;
VK_CHECK_THROW(vkCreateImageView(m_vk->vk_device(), &view_info, nullptr, &m_vk_image_view));
// Map to NGX
m_ngx_resource = NVSDK_NGX_Create_ImageView_Resource_VK(m_vk_image_view, m_vk_image, view_info.subresourceRange, image_info.format, m_size.x, m_size.y, true);
// Map to CUDA memory: VkDeviceMemory->FD/HANDLE->cudaExternalMemory->CUDA pointer
#ifdef _WIN32
HANDLE handle = nullptr;
VkMemoryGetWin32HandleInfoKHR handle_info = {};
handle_info.sType = VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR;
handle_info.memory = m_vk_device_memory;
handle_info.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT;
auto pfn_vkGetMemory = (PFN_vkGetMemoryWin32HandleKHR)vkGetDeviceProcAddr(m_vk->vk_device(), "vkGetMemoryWin32HandleKHR");
#else
int handle = -1;
VkMemoryGetFdInfoKHR handle_info = {};
handle_info.sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR;
handle_info.memory = m_vk_device_memory;
handle_info.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
auto pfn_vkGetMemory = (PFN_vkGetMemoryFdKHR)vkGetDeviceProcAddr(m_vk->vk_device(), "vkGetMemoryFdKHR");
#endif
if (!pfn_vkGetMemory) {
throw std::runtime_error{"Failed to locate pfn_vkGetMemory."};
}
VK_CHECK_THROW(pfn_vkGetMemory(m_vk->vk_device(), &handle_info, &handle));
// Map handle to CUDA memory
cudaExternalMemoryHandleDesc external_memory_handle_desc = {};
memset(&external_memory_handle_desc, 0, sizeof(external_memory_handle_desc));
#ifdef _WIN32
external_memory_handle_desc.type = cudaExternalMemoryHandleTypeOpaqueWin32;
external_memory_handle_desc.handle.win32.handle = handle;
#else
external_memory_handle_desc.type = cudaExternalMemoryHandleTypeOpaqueFd;
external_memory_handle_desc.handle.fd = handle;
#endif
external_memory_handle_desc.size = mem_requirements.size;
CUDA_CHECK_THROW(cudaImportExternalMemory(&m_cuda_external_memory, &external_memory_handle_desc));
cudaExternalMemoryBufferDesc external_memory_buffer_desc = {};
memset(&external_memory_buffer_desc, 0, sizeof(external_memory_buffer_desc));
external_memory_buffer_desc.offset = 0;
external_memory_buffer_desc.size = mem_requirements.size;
void* ptr;
CUDA_CHECK_THROW(cudaExternalMemoryGetMappedBuffer(&ptr, m_cuda_external_memory, &external_memory_buffer_desc));
m_cuda_data = (float*)ptr;
// ----------------
// Also get a surface object array, as the above buffer might be too cumbersome to deal with
// ----------------
cudaExternalMemoryMipmappedArrayDesc external_memory_mipmapped_array_desc = {};
memset(&external_memory_mipmapped_array_desc, 0, sizeof(external_memory_mipmapped_array_desc));
cudaChannelFormatDesc channel_format = {};
channel_format.f = cudaChannelFormatKindFloat;
switch (n_channels) {
case 1: channel_format.x = 32; channel_format.y = 0; channel_format.z = 0; channel_format.w = 0; break;
case 2: channel_format.x = 32; channel_format.y = 32; channel_format.z = 0; channel_format.w = 0; break;
case 3: channel_format.x = 32; channel_format.y = 32; channel_format.z = 32; channel_format.w = 0; break;
case 4: channel_format.x = 32; channel_format.y = 32; channel_format.z = 32; channel_format.w = 32; break;
default: throw std::runtime_error{"VulkanTexture only supports 1, 2, 3, or 4 channels."};
}
cudaExtent extent = {};
extent.width = m_size.x;
extent.height = m_size.y;
extent.depth = 0;
external_memory_mipmapped_array_desc.offset = 0;
external_memory_mipmapped_array_desc.formatDesc = channel_format;
external_memory_mipmapped_array_desc.extent = extent;
external_memory_mipmapped_array_desc.flags = cudaArraySurfaceLoadStore;
external_memory_mipmapped_array_desc.numLevels = 1;
cudaExternalMemoryGetMappedMipmappedArray(&m_cuda_mipmapped_array, m_cuda_external_memory, &external_memory_mipmapped_array_desc);
cudaArray_t first_level_array;
CUDA_CHECK_THROW(cudaGetMipmappedArrayLevel(&first_level_array, m_cuda_mipmapped_array, 0));
struct cudaResourceDesc resource_desc;
memset(&resource_desc, 0, sizeof(resource_desc));
resource_desc.resType = cudaResourceTypeArray;
resource_desc.res.array.array = first_level_array;
CUDA_CHECK_THROW(cudaCreateSurfaceObject(&m_cuda_surface_object, &resource_desc));
m_n_bytes = mem_requirements.size;
g_total_n_bytes_allocated += m_n_bytes;
cleanup_guard.disarm();
}
virtual ~VulkanTexture() {
clear();
}
void clear() {
g_total_n_bytes_allocated -= m_n_bytes;
if (m_cuda_data) {
cudaFree(m_cuda_data);
m_cuda_data = nullptr;
}
if (m_cuda_surface_object) {
cudaDestroySurfaceObject(m_cuda_surface_object);
m_cuda_surface_object = {};
}
if (m_cuda_mipmapped_array) {
cudaFreeMipmappedArray(m_cuda_mipmapped_array);
m_cuda_mipmapped_array = {};
}
if (m_cuda_external_memory) {
cudaDestroyExternalMemory(m_cuda_external_memory);
m_cuda_external_memory = {};
}
if (m_vk_image_view) {
vkDestroyImageView(m_vk->vk_device(), m_vk_image_view, nullptr);
m_vk_image_view = {};
}
if (m_vk_image) {
vkDestroyImage(m_vk->vk_device(), m_vk_image, nullptr);
m_vk_image = {};
}
if (m_vk_device_memory) {
vkFreeMemory(m_vk->vk_device(), m_vk_device_memory, nullptr);
m_vk_device_memory = {};
}
}
float* data() {
return m_cuda_data;
}
cudaSurfaceObject_t surface() {
return m_cuda_surface_object;
}
NVSDK_NGX_Resource_VK& ngx_resource() {
return m_ngx_resource;
}
size_t bytes() const {
return m_size.x * (size_t)m_size.y * sizeof(float) * m_n_channels;
}
ivec2 size() const {
return m_size;
}
private:
std::shared_ptr<VulkanAndNgx> m_vk;
ivec2 m_size;
uint32_t m_n_channels;
size_t m_n_bytes = 0;
VkImage m_vk_image = {};
VkImageView m_vk_image_view = {};
VkDeviceMemory m_vk_device_memory = {};
cudaExternalMemory_t m_cuda_external_memory = {};
cudaMipmappedArray_t m_cuda_mipmapped_array = {};
cudaSurfaceObject_t m_cuda_surface_object = {};
float* m_cuda_data = nullptr;
NVSDK_NGX_Resource_VK m_ngx_resource = {};
};
NVSDK_NGX_PerfQuality_Value ngx_dlss_quality(EDlssQuality quality) {
switch (quality) {
case EDlssQuality::UltraPerformance: return NVSDK_NGX_PerfQuality_Value_UltraPerformance;
case EDlssQuality::MaxPerformance: return NVSDK_NGX_PerfQuality_Value_MaxPerf;
case EDlssQuality::Balanced: return NVSDK_NGX_PerfQuality_Value_Balanced;
case EDlssQuality::MaxQuality: return NVSDK_NGX_PerfQuality_Value_MaxQuality;
case EDlssQuality::UltraQuality: return NVSDK_NGX_PerfQuality_Value_UltraQuality;
default: throw std::runtime_error{"Unknown DLSS quality setting."};
}
}
struct DlssFeatureSpecs {
EDlssQuality quality;
ivec2 out_resolution;
ivec2 optimal_in_resolution;
ivec2 min_in_resolution;
ivec2 max_in_resolution;
float optimal_sharpness;
float distance(const ivec2& resolution) const {
return length(vec2(max(max(min_in_resolution - resolution, resolution - max_in_resolution), ivec2(0))));
}
ivec2 clamp_resolution(const ivec2& resolution) const {
return clamp(resolution, min_in_resolution, max_in_resolution);
}
};
DlssFeatureSpecs dlss_feature_specs(NVSDK_NGX_Parameter* ngx_parameters, const ivec2& out_resolution, EDlssQuality quality) {
DlssFeatureSpecs specs;
specs.quality = quality;
specs.out_resolution = out_resolution;
NGX_CHECK_THROW(NGX_DLSS_GET_OPTIMAL_SETTINGS(
ngx_parameters,
specs.out_resolution.x, specs.out_resolution.y,
ngx_dlss_quality(quality),
(uint32_t*)&specs.optimal_in_resolution.x, (uint32_t*)&specs.optimal_in_resolution.y,
(uint32_t*)&specs.max_in_resolution.x, (uint32_t*)&specs.max_in_resolution.y,
(uint32_t*)&specs.min_in_resolution.x, (uint32_t*)&specs.min_in_resolution.y,
&specs.optimal_sharpness
));
// Don't permit input resolutions larger than the output. (Just in case DLSS allows it.)
specs.optimal_in_resolution = min(specs.optimal_in_resolution, out_resolution);
specs.max_in_resolution = min(specs.max_in_resolution, out_resolution);
specs.min_in_resolution = min(specs.min_in_resolution, out_resolution);
return specs;
}
class DlssFeature {
public:
DlssFeature(std::shared_ptr<VulkanAndNgx> vk_and_ngx, const DlssFeatureSpecs& specs, bool is_hdr, bool sharpen) : m_vk_and_ngx{vk_and_ngx}, m_specs{specs}, m_is_hdr{is_hdr}, m_sharpen{sharpen} {
// Initialize DLSS
unsigned int creation_node_mask = 1;
unsigned int visibility_node_mask = 1;
int dlss_create_feature_flags = NVSDK_NGX_DLSS_Feature_Flags_None;
dlss_create_feature_flags |= true ? NVSDK_NGX_DLSS_Feature_Flags_MVLowRes : 0;
dlss_create_feature_flags |= false ? NVSDK_NGX_DLSS_Feature_Flags_MVJittered : 0;
dlss_create_feature_flags |= is_hdr ? NVSDK_NGX_DLSS_Feature_Flags_IsHDR : 0;
dlss_create_feature_flags |= true ? NVSDK_NGX_DLSS_Feature_Flags_DepthInverted : 0;
dlss_create_feature_flags |= sharpen ? NVSDK_NGX_DLSS_Feature_Flags_DoSharpening : 0;
dlss_create_feature_flags |= false ? NVSDK_NGX_DLSS_Feature_Flags_AutoExposure : 0;
NVSDK_NGX_DLSS_Create_Params dlss_create_params;
memset(&dlss_create_params, 0, sizeof(dlss_create_params));
dlss_create_params.Feature.InWidth = m_specs.optimal_in_resolution.x;
dlss_create_params.Feature.InHeight = m_specs.optimal_in_resolution.y;
dlss_create_params.Feature.InTargetWidth = m_specs.out_resolution.x;
dlss_create_params.Feature.InTargetHeight = m_specs.out_resolution.y;
dlss_create_params.Feature.InPerfQualityValue = ngx_dlss_quality(m_specs.quality);
dlss_create_params.InFeatureCreateFlags = dlss_create_feature_flags;
{
m_vk_and_ngx->vk_command_buffer_begin();
ScopeGuard command_buffer_guard{[&]() { m_vk_and_ngx->vk_command_buffer_end_and_submit_sync(); }};
NGX_CHECK_THROW(NGX_VULKAN_CREATE_DLSS_EXT(m_vk_and_ngx->vk_command_buffer(), creation_node_mask, visibility_node_mask, &m_ngx_dlss, m_vk_and_ngx->ngx_parameters(), &dlss_create_params));
}
}
DlssFeature(std::shared_ptr<VulkanAndNgx> vk_and_ngx, const ivec2& out_resolution, bool is_hdr, bool sharpen, EDlssQuality quality)
: DlssFeature{vk_and_ngx, dlss_feature_specs(vk_and_ngx->ngx_parameters(), out_resolution, quality), is_hdr, sharpen} {}
~DlssFeature() {
cudaDeviceSynchronize();
if (m_ngx_dlss) {
NVSDK_NGX_VULKAN_ReleaseFeature(m_ngx_dlss);
}
m_vk_and_ngx->vk_synchronize();
}
void run(
const ivec2& in_resolution,
const vec2& jitter_offset,
float sharpening,
bool shall_reset,
NVSDK_NGX_Resource_VK& frame,
NVSDK_NGX_Resource_VK& depth,
NVSDK_NGX_Resource_VK& mvec,
NVSDK_NGX_Resource_VK& exposure,
NVSDK_NGX_Resource_VK& output
) {
if (!m_sharpen && sharpening != 0.0f) {
throw std::runtime_error{"May only specify non-zero sharpening, when DlssFeature has been created with sharpen option."};
}
m_vk_and_ngx->vk_command_buffer_begin();
NVSDK_NGX_VK_DLSS_Eval_Params dlss_params;
memset(&dlss_params, 0, sizeof(dlss_params));
dlss_params.Feature.pInColor = &frame;
dlss_params.Feature.pInOutput = &output;
dlss_params.pInDepth = &depth;
dlss_params.pInMotionVectors = &mvec;
dlss_params.pInExposureTexture = &exposure;
dlss_params.InJitterOffsetX = jitter_offset.x;
dlss_params.InJitterOffsetY = jitter_offset.y;
dlss_params.Feature.InSharpness = sharpening;
dlss_params.InReset = shall_reset;
dlss_params.InMVScaleX = 1.0f;
dlss_params.InMVScaleY = 1.0f;
dlss_params.InRenderSubrectDimensions = {(uint32_t)in_resolution.x, (uint32_t)in_resolution.y};
NGX_CHECK_THROW(NGX_VULKAN_EVALUATE_DLSS_EXT(m_vk_and_ngx->vk_command_buffer(), m_ngx_dlss, m_vk_and_ngx->ngx_parameters(), &dlss_params));
m_vk_and_ngx->vk_command_buffer_end_and_submit_sync();
}
bool is_hdr() const {
return m_is_hdr;
}
bool sharpen() const {
return m_sharpen;
}
EDlssQuality quality() const {
return m_specs.quality;
}
ivec2 out_resolution() const {
return m_specs.out_resolution;
}
ivec2 clamp_resolution(const ivec2& resolution) const {
return m_specs.clamp_resolution(resolution);
}
ivec2 optimal_in_resolution() const {
return m_specs.optimal_in_resolution;
}
private:
std::shared_ptr<VulkanAndNgx> m_vk_and_ngx;
NVSDK_NGX_Handle* m_ngx_dlss = {};
DlssFeatureSpecs m_specs;
bool m_is_hdr;
bool m_sharpen;
};
class Dlss : public IDlss {
public:
Dlss(std::shared_ptr<VulkanAndNgx> vk_and_ngx, const ivec2& max_out_resolution)
:
m_vk_and_ngx{vk_and_ngx},
m_max_out_resolution{max_out_resolution},
// Allocate all buffers at output resolution and use dynamic sub-rects
// to use subsets of them. This avoids re-allocations when using DLSS
// with dynamically changing input resolution.
m_frame_buffer{m_vk_and_ngx, max_out_resolution, 4},
m_depth_buffer{m_vk_and_ngx, max_out_resolution, 1},
m_mvec_buffer{m_vk_and_ngx, max_out_resolution, 2},
m_exposure_buffer{m_vk_and_ngx, {1, 1}, 1},
m_output_buffer{m_vk_and_ngx, max_out_resolution, 4}
{
// Various quality modes of DLSS
for (int i = 0; i < (int)EDlssQuality::NumDlssQualitySettings; ++i) {
try {
auto specs = dlss_feature_specs(m_vk_and_ngx->ngx_parameters(), max_out_resolution, (EDlssQuality)i);
// Only emplace the specs if the feature can be created in practice!
DlssFeature{m_vk_and_ngx, specs, true, true};
DlssFeature{m_vk_and_ngx, specs, true, false};
DlssFeature{m_vk_and_ngx, specs, false, true};
DlssFeature{m_vk_and_ngx, specs, false, false};
m_dlss_specs.emplace_back(specs);
} catch (...) {}
}
// For super insane performance requirements (more than 3x upscaling) try UltraPerformance
// with reduced output resolutions for 4.5x, 6x, 9x.
std::vector<ivec2> reduced_out_resolutions = {
max_out_resolution / 3 * 2,
max_out_resolution / 2,
max_out_resolution / 3,
// max_out_resolution / 4,
};
for (const auto& out_resolution : reduced_out_resolutions) {
try {
auto specs = dlss_feature_specs(m_vk_and_ngx->ngx_parameters(), out_resolution, EDlssQuality::UltraPerformance);
// Only emplace the specs if the feature can be created in practice!
DlssFeature{m_vk_and_ngx, specs, true, true};
DlssFeature{m_vk_and_ngx, specs, true, false};
DlssFeature{m_vk_and_ngx, specs, false, true};
DlssFeature{m_vk_and_ngx, specs, false, false};
m_dlss_specs.emplace_back(specs);
} catch (...) {}
}
}
virtual ~Dlss() {
// Destroy DLSS feature prior to killing underlying buffers.
m_dlss_feature = nullptr;
}
void update_feature(const ivec2& in_resolution, bool is_hdr, bool sharpen) override {
CUDA_CHECK_THROW(cudaDeviceSynchronize());
DlssFeatureSpecs specs;
bool found = false;
for (const auto& s : m_dlss_specs) {
if (s.distance(in_resolution) == 0.0f) {
specs = s;
found = true;
}
}
if (!found) {
throw std::runtime_error{"Dlss::run called with invalid input resolution."};
}
if (!m_dlss_feature || m_dlss_feature->is_hdr() != is_hdr || m_dlss_feature->sharpen() != sharpen || m_dlss_feature->quality() != specs.quality || m_dlss_feature->out_resolution() != specs.out_resolution) {
m_dlss_feature.reset(new DlssFeature{m_vk_and_ngx, specs.out_resolution, is_hdr, sharpen, specs.quality});
}
}
void run(
const ivec2& in_resolution,
bool is_hdr,
float sharpening,
const vec2& jitter_offset,
bool shall_reset
) override {
CUDA_CHECK_THROW(cudaDeviceSynchronize());
update_feature(in_resolution, is_hdr, sharpening != 0.0f);
m_dlss_feature->run(
in_resolution,
jitter_offset,
sharpening,
shall_reset,
m_frame_buffer.ngx_resource(),
m_depth_buffer.ngx_resource(),
m_mvec_buffer.ngx_resource(),
m_exposure_buffer.ngx_resource(),
m_output_buffer.ngx_resource()
);
}
cudaSurfaceObject_t frame() override {
return m_frame_buffer.surface();
}
cudaSurfaceObject_t depth() override {
return m_depth_buffer.surface();
}
cudaSurfaceObject_t mvec() override {
return m_mvec_buffer.surface();
}
cudaSurfaceObject_t exposure() override {
return m_exposure_buffer.surface();
}
cudaSurfaceObject_t output() override {
return m_output_buffer.surface();
}
ivec2 clamp_resolution(const ivec2& resolution) const {
float min_distance = std::numeric_limits<float>::infinity();
DlssFeatureSpecs min_distance_specs = {};
for (const auto& specs : m_dlss_specs) {
float distance = specs.distance(resolution);
if (distance <= min_distance) {
min_distance = distance;
min_distance_specs = specs;
}
}
return min_distance_specs.clamp_resolution(resolution);
}
ivec2 out_resolution() const override {
return m_dlss_feature ? m_dlss_feature->out_resolution() : m_max_out_resolution;
}
ivec2 max_out_resolution() const override {
return m_max_out_resolution;
}
bool is_hdr() const override {
return m_dlss_feature && m_dlss_feature->is_hdr();
}
bool sharpen() const override {
return m_dlss_feature && m_dlss_feature->sharpen();
}
EDlssQuality quality() const override {
return m_dlss_feature ? m_dlss_feature->quality() : EDlssQuality::None;
}
private:
std::shared_ptr<VulkanAndNgx> m_vk_and_ngx;
std::unique_ptr<DlssFeature> m_dlss_feature;
std::vector<DlssFeatureSpecs> m_dlss_specs;
VulkanTexture m_frame_buffer;
VulkanTexture m_depth_buffer;
VulkanTexture m_mvec_buffer;
VulkanTexture m_exposure_buffer;
VulkanTexture m_output_buffer;
ivec2 m_max_out_resolution;
};
std::unique_ptr<IDlss> VulkanAndNgx::init_dlss(const ivec2& out_resolution) {
return std::make_unique<Dlss>(shared_from_this(), out_resolution);
}
}
|