Spaces:
Build error
Build error
File size: 33,426 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 |
/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file python_api.cpp
* @author Thomas Müller & Alex Evans, NVIDIA
*/
#include <neural-graphics-primitives/common_device.cuh>
#include <neural-graphics-primitives/testbed.h>
#include <neural-graphics-primitives/thread_pool.h>
#include <json/json.hpp>
#include <pybind11/functional.h>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11_json/pybind11_json.hpp>
#include <tiny-cuda-nn/vec_pybind11.h>
#include <tinylogger/tinylogger.h>
#include <filesystem/path.h>
#ifdef NGP_GUI
# include <imgui/imgui.h>
# ifdef _WIN32
# include <GL/gl3w.h>
# else
# include <GL/glew.h>
# endif
# include <GLFW/glfw3.h>
#endif
using namespace nlohmann;
namespace py = pybind11;
namespace ngp {
// Returns RGBA and depth buffers
std::pair<py::array_t<float>, py::array_t<float>>
Testbed::render_to_cpu(int width, int height, int spp, bool linear, float start_time, float end_time, float fps, float shutter_fraction) {
m_windowless_render_surface.resize({width, height});
m_windowless_render_surface.reset_accumulation();
if (end_time < 0.f) {
end_time = start_time;
}
bool path_animation_enabled = start_time >= 0.f;
if (!path_animation_enabled) { // the old code disabled camera smoothing for non-path renders; so we preserve that behaviour
m_smoothed_camera = m_camera;
}
// this rendering code assumes that the intra-frame camera motion starts from m_smoothed_camera (ie where we left off) to allow for EMA
// camera smoothing. in the case of a camera path animation, at the very start of the animation, we have yet to initialize
// smoothed_camera to something sensible
// - it will just be the default boot position. oops!
// that led to the first frame having a crazy streak from the default camera position to the start of the path.
// so we detect that case and explicitly force the current matrix to the start of the path
if (start_time == 0.f) {
set_camera_from_time(start_time);
m_smoothed_camera = m_camera;
}
auto start_cam_matrix = m_smoothed_camera;
// now set up the end-of-frame camera matrix if we are moving along a path
if (path_animation_enabled) {
set_camera_from_time(end_time);
apply_camera_smoothing(1000.f / fps);
}
auto end_cam_matrix = m_smoothed_camera;
auto prev_camera_matrix = m_smoothed_camera;
for (int i = 0; i < spp; ++i) {
float start_alpha = ((float)i) / (float)spp * shutter_fraction;
float end_alpha = ((float)i + 1.0f) / (float)spp * shutter_fraction;
auto sample_start_cam_matrix = start_cam_matrix;
auto sample_end_cam_matrix = camera_log_lerp(start_cam_matrix, end_cam_matrix, shutter_fraction);
if (i == 0) {
prev_camera_matrix = sample_start_cam_matrix;
}
if (path_animation_enabled) {
set_camera_from_time(start_time + (end_time - start_time) * (start_alpha + end_alpha) / 2.0f);
m_smoothed_camera = m_camera;
}
if (m_autofocus) {
autofocus();
}
render_frame(
m_stream.get(),
sample_start_cam_matrix,
sample_end_cam_matrix,
prev_camera_matrix,
m_screen_center,
m_relative_focal_length,
{}, // foveation
{}, // prev foveation
{}, // lens
m_visualized_dimension,
m_windowless_render_surface,
!linear
);
prev_camera_matrix = sample_start_cam_matrix;
}
// For cam smoothing when rendering the next frame.
m_smoothed_camera = end_cam_matrix;
py::array_t<float> result_rgba({height, width, 4});
py::buffer_info buf_rgba = result_rgba.request();
py::array_t<float> result_depth({height, width});
py::buffer_info buf_depth = result_depth.request();
CUDA_CHECK_THROW(cudaMemcpy2DFromArray(
buf_rgba.ptr, width * sizeof(float) * 4, m_windowless_render_surface.surface_provider().array(), 0, 0, width * sizeof(float) * 4, height, cudaMemcpyDeviceToHost
));
CUDA_CHECK_THROW(
cudaMemcpy(buf_depth.ptr, m_windowless_render_surface.depth_buffer(), height * width * sizeof(float), cudaMemcpyDeviceToHost)
);
return {result_rgba, result_depth};
}
py::array_t<float> Testbed::render_to_cpu_rgba(
int width, int height, int spp, bool linear, float start_time, float end_time, float fps, float shutter_fraction
) {
return render_to_cpu(width, height, spp, linear, start_time, end_time, fps, shutter_fraction).first;
}
py::array_t<float> Testbed::view(bool linear, size_t view_idx) const {
if (m_views.size() <= view_idx) {
throw std::runtime_error{fmt::format("View #{} does not exist.", view_idx)};
}
auto& view = m_views.at(view_idx);
auto& render_buffer = *view.render_buffer;
auto res = render_buffer.out_resolution();
py::array_t<float> result({res.y, res.x, 4});
py::buffer_info buf = result.request();
float* data = (float*)buf.ptr;
CUDA_CHECK_THROW(cudaMemcpy2DFromArray(
data, res.x * sizeof(float) * 4, render_buffer.surface_provider().array(), 0, 0, res.x * sizeof(float) * 4, res.y, cudaMemcpyDeviceToHost
));
if (linear) {
ThreadPool{}.parallel_for<size_t>(0, res.y, [&](size_t y) {
size_t base = y * res.x;
for (uint32_t x = 0; x < res.x; ++x) {
size_t px = base + x;
data[px * 4 + 0] = srgb_to_linear(data[px * 4 + 0]);
data[px * 4 + 1] = srgb_to_linear(data[px * 4 + 1]);
data[px * 4 + 2] = srgb_to_linear(data[px * 4 + 2]);
}
});
}
return result;
}
std::pair<py::array_t<float>, py::array_t<uint32_t>>
Testbed::reproject(const mat4x3& src, const py::array_t<float>& src_img, const py::array_t<float>& src_depth, const mat4x3& dst) {
py::buffer_info src_img_buf = src_img.request();
py::buffer_info src_depth_buf = src_depth.request();
if (src_img_buf.ndim != 3) {
throw std::runtime_error{"src image should be (H,W,C) where C=4"};
}
if (src_img_buf.shape[2] != 4) {
throw std::runtime_error{"src image should be (H,W,C) where C=4"};
}
if (src_depth_buf.ndim != 2) {
throw std::runtime_error{"src depth should be (H,W)"};
}
if (src_img_buf.shape[0] != src_depth_buf.shape[0] || src_img_buf.shape[1] != src_depth_buf.shape[1]) {
throw std::runtime_error{"image and depth dimensions don't match"};
}
const ivec2 src_res = {(int)src_img_buf.shape[1], (int)src_img_buf.shape[0]};
const ivec2 dst_res = src_res; // For now
auto src_render_buffer = std::make_shared<CudaRenderBuffer>(std::make_shared<CudaSurface2D>());
src_render_buffer->resize(src_res);
auto dst_render_buffer = std::make_shared<CudaRenderBuffer>(std::make_shared<CudaSurface2D>());
dst_render_buffer->resize(dst_res);
View src_view, dst_view;
src_view.camera0 = src_view.camera1 = src_view.prev_camera = src;
src_view.device = &primary_device();
src_view.foveation = src_view.prev_foveation = {};
src_view.screen_center = vec2(0.5f);
src_view.full_resolution = src_res;
src_view.visualized_dimension = -1;
src_view.relative_focal_length = m_relative_focal_length;
src_view.render_buffer = src_render_buffer;
dst_view.camera0 = dst_view.camera1 = dst_view.prev_camera = dst;
dst_view.device = &primary_device();
dst_view.foveation = dst_view.prev_foveation = {};
dst_view.screen_center = vec2(0.5f);
dst_view.full_resolution = dst_res;
dst_view.visualized_dimension = -1;
dst_view.relative_focal_length = m_relative_focal_length;
dst_view.render_buffer = dst_render_buffer;
CUDA_CHECK_THROW(cudaMemcpyAsync(
src_render_buffer->frame_buffer(), src_img_buf.ptr, product(src_res) * sizeof(float) * 4, cudaMemcpyHostToDevice, m_stream.get()
));
CUDA_CHECK_THROW(cudaMemcpyAsync(
src_render_buffer->depth_buffer(), src_depth_buf.ptr, product(src_res) * sizeof(float), cudaMemcpyHostToDevice, m_stream.get()
));
std::vector<const View*> src_views = {&src_view};
reproject_views(src_views, dst_view);
py::array_t<float> result_rgba({dst_res.y, dst_res.x, 4});
py::buffer_info buf_rgba = result_rgba.request();
py::array_t<uint32_t> result_idx({dst_res.y, dst_res.x});
py::buffer_info buf_idx = result_idx.request();
CUDA_CHECK_THROW(cudaMemcpyAsync(
buf_rgba.ptr, dst_render_buffer->frame_buffer(), product(dst_res) * sizeof(float) * 4, cudaMemcpyDeviceToHost, m_stream.get()
));
auto idx_buffer = GPUImage<uint32_t>(dst_res, m_stream.get());
parallel_for_gpu(
m_stream.get(),
idx_buffer.n_elements(),
[out = idx_buffer.view(), in = dst_view.index_field.view(), src_width = src_res.x, dst_width = dst_res.x] __device__(size_t i) {
ivec2 idx = ivec2(i % dst_width, i / dst_width);
ivec2 src_idx = in(idx.y, idx.x).px;
out(idx.y, idx.x) = src_idx.x + src_idx.y * src_width;
}
);
CUDA_CHECK_THROW(
cudaMemcpyAsync(buf_idx.ptr, idx_buffer.data(), product(dst_res) * sizeof(uint32_t), cudaMemcpyDeviceToHost, m_stream.get())
);
return {result_rgba, result_idx};
}
uint32_t Testbed::add_src_view(
mat4x3 camera_to_world, float fx, float fy, float cx, float cy, Lens lens, pybind11::array_t<float> img, pybind11::array_t<float> depth, float timestamp, bool is_srgb
) {
py::buffer_info src_img_buf = img.request();
py::buffer_info src_depth_buf = depth.request();
if (src_img_buf.ndim != 3) {
throw std::runtime_error{"src image should be (H,W,C) where C=4"};
}
if (src_img_buf.shape[2] != 4) {
throw std::runtime_error{"src image should be (H,W,C) where C=4"};
}
if (src_depth_buf.ndim != 2) {
throw std::runtime_error{"src depth should be (H,W)"};
}
if (src_img_buf.shape[0] != src_depth_buf.shape[0] || src_img_buf.shape[1] != src_depth_buf.shape[1]) {
throw std::runtime_error{"image and depth dimensions don't match"};
}
const ivec2 src_res = {(int)src_img_buf.shape[1], (int)src_img_buf.shape[0]};
static uint32_t id = 0;
m_reproject_src_views.emplace_back();
if (m_reproject_max_src_view_count > 0 && m_reproject_src_views.size() > (size_t)m_reproject_max_src_view_count) {
m_reproject_src_views.pop_front();
}
auto& src_view = m_reproject_src_views.back();
src_view.uid = id++;
src_view.camera0 = src_view.camera1 = src_view.prev_camera = camera_to_world;
src_view.device = &primary_device();
src_view.foveation = src_view.prev_foveation = {};
src_view.screen_center = vec2(cx, cy);
src_view.full_resolution = src_res;
src_view.visualized_dimension = -1;
src_view.relative_focal_length = vec2(fx, fy) / (float)src_res[m_fov_axis];
src_view.render_buffer = std::make_shared<CudaRenderBuffer>(std::make_shared<CudaSurface2D>());
src_view.render_buffer->resize(src_res);
src_view.lens = lens;
CUDA_CHECK_THROW(cudaMemcpyAsync(
src_view.render_buffer->frame_buffer(), src_img_buf.ptr, product(src_res) * sizeof(float) * 4, cudaMemcpyHostToDevice, m_stream.get()
));
CUDA_CHECK_THROW(cudaMemcpyAsync(
src_view.render_buffer->depth_buffer(), src_depth_buf.ptr, product(src_res) * sizeof(float), cudaMemcpyHostToDevice, m_stream.get()
));
if (is_srgb) {
// Convert from sRGB to linear on the GPU directly
parallel_for_gpu(
m_stream.get(),
product(src_res) * 4,
[values = (float *) src_view.render_buffer->frame_buffer()] __device__(size_t i) {
if ((i % 4) == 3) {
// Don't linearize the alpha channel
return;
}
values[i] = srgb_to_linear(values[i]);
}
);
}
return src_view.uid;
}
pybind11::array_t<uint32_t> Testbed::src_view_ids() const {
py::array_t<uint32_t> result({(int)m_reproject_src_views.size()});
py::buffer_info buf = result.request();
uint32_t* data = (uint32_t*)buf.ptr;
for (size_t i = 0; i < m_reproject_src_views.size(); ++i) {
data[i] = m_reproject_src_views[i].uid;
}
return result;
}
#ifdef NGP_GUI
py::array_t<float> Testbed::screenshot(bool linear, bool front_buffer) const {
std::vector<float> tmp(product(m_window_res) * 4);
glReadBuffer(front_buffer ? GL_FRONT : GL_BACK);
glReadPixels(0, 0, m_window_res.x, m_window_res.y, GL_RGBA, GL_FLOAT, tmp.data());
py::array_t<float> result({m_window_res.y, m_window_res.x, 4});
py::buffer_info buf = result.request();
float* data = (float*)buf.ptr;
// Linear, alpha premultiplied, Y flipped
ThreadPool{}.parallel_for<size_t>(0, m_window_res.y, [&](size_t y) {
size_t base = y * m_window_res.x;
size_t base_reverse = (m_window_res.y - y - 1) * m_window_res.x;
for (uint32_t x = 0; x < m_window_res.x; ++x) {
size_t px = base + x;
size_t px_reverse = base_reverse + x;
data[px_reverse * 4 + 0] = linear ? srgb_to_linear(tmp[px * 4 + 0]) : tmp[px * 4 + 0];
data[px_reverse * 4 + 1] = linear ? srgb_to_linear(tmp[px * 4 + 1]) : tmp[px * 4 + 1];
data[px_reverse * 4 + 2] = linear ? srgb_to_linear(tmp[px * 4 + 2]) : tmp[px * 4 + 2];
data[px_reverse * 4 + 3] = tmp[px * 4 + 3];
}
});
return result;
}
#endif
PYBIND11_MODULE(pyngp, m) {
m.doc() = "Gen3C GUI";
m.def("free_temporary_memory", &free_all_gpu_memory_arenas);
py::enum_<ETestbedMode>(m, "TestbedMode")
.value("Gen3c", ETestbedMode::Gen3c)
.value("None", ETestbedMode::None)
.export_values();
m.def("mode_from_scene", &mode_from_scene);
m.def("mode_from_string", &mode_from_string);
py::enum_<EGroundTruthRenderMode>(m, "GroundTruthRenderMode")
.value("Shade", EGroundTruthRenderMode::Shade)
.value("Depth", EGroundTruthRenderMode::Depth)
.export_values();
py::enum_<ERenderMode>(m, "RenderMode")
.value("AO", ERenderMode::AO)
.value("Shade", ERenderMode::Shade)
.value("Normals", ERenderMode::Normals)
.value("Positions", ERenderMode::Positions)
.value("Depth", ERenderMode::Depth)
.value("Distortion", ERenderMode::Distortion)
.value("Cost", ERenderMode::Cost)
.value("Slice", ERenderMode::Slice)
.export_values();
py::enum_<ERandomMode>(m, "RandomMode")
.value("Random", ERandomMode::Random)
.value("Halton", ERandomMode::Halton)
.value("Sobol", ERandomMode::Sobol)
.value("Stratified", ERandomMode::Stratified)
.export_values();
py::enum_<ELossType>(m, "LossType")
.value("L2", ELossType::L2)
.value("L1", ELossType::L1)
.value("Mape", ELossType::Mape)
.value("Smape", ELossType::Smape)
.value("Huber", ELossType::Huber)
// Legacy: we used to refer to the Huber loss
// (L2 near zero, L1 further away) as "SmoothL1".
.value("SmoothL1", ELossType::Huber)
.value("LogL1", ELossType::LogL1)
.value("RelativeL2", ELossType::RelativeL2)
.export_values();
py::enum_<ESDFGroundTruthMode>(m, "SDFGroundTruthMode")
.value("RaytracedMesh", ESDFGroundTruthMode::RaytracedMesh)
.value("SpheretracedMesh", ESDFGroundTruthMode::SpheretracedMesh)
.value("SDFBricks", ESDFGroundTruthMode::SDFBricks)
.export_values();
py::enum_<EMeshSdfMode>(m, "MeshSdfMode")
.value("Watertight", EMeshSdfMode::Watertight)
.value("Raystab", EMeshSdfMode::Raystab)
.value("PathEscape", EMeshSdfMode::PathEscape)
.export_values();
py::enum_<EColorSpace>(m, "ColorSpace").value("Linear", EColorSpace::Linear).value("SRGB", EColorSpace::SRGB).export_values();
py::enum_<ETonemapCurve>(m, "TonemapCurve")
.value("Identity", ETonemapCurve::Identity)
.value("ACES", ETonemapCurve::ACES)
.value("Hable", ETonemapCurve::Hable)
.value("Reinhard", ETonemapCurve::Reinhard)
.export_values();
py::enum_<ELensMode>(m, "LensMode")
.value("Perspective", ELensMode::Perspective)
.value("OpenCV", ELensMode::OpenCV)
.value("FTheta", ELensMode::FTheta)
.value("LatLong", ELensMode::LatLong)
.value("OpenCVFisheye", ELensMode::OpenCVFisheye)
.value("Equirectangular", ELensMode::Equirectangular)
.value("Orthographic", ELensMode::Orthographic)
.export_values();
py::class_<BoundingBox>(m, "BoundingBox")
.def(py::init<>())
.def(py::init<const vec3&, const vec3&>())
.def("center", &BoundingBox::center)
.def("contains", &BoundingBox::contains)
.def("diag", &BoundingBox::diag)
.def("distance", &BoundingBox::distance)
.def("distance_sq", &BoundingBox::distance_sq)
.def("enlarge", py::overload_cast<const vec3&>(&BoundingBox::enlarge))
.def("enlarge", py::overload_cast<const BoundingBox&>(&BoundingBox::enlarge))
.def("get_vertices", &BoundingBox::get_vertices)
.def("inflate", &BoundingBox::inflate)
.def("intersection", &BoundingBox::intersection)
.def("intersects", py::overload_cast<const BoundingBox&>(&BoundingBox::intersects, py::const_))
.def("ray_intersect", &BoundingBox::ray_intersect)
.def("relative_pos", &BoundingBox::relative_pos)
.def("signed_distance", &BoundingBox::signed_distance)
.def_readwrite("min", &BoundingBox::min)
.def_readwrite("max", &BoundingBox::max);
py::class_<Lens> lens(m, "Lens");
lens.def(py::init<>()).def_readwrite("mode", &Lens::mode).def_property_readonly("params", [](py::object& obj) {
Lens& o = obj.cast<Lens&>();
return py::array{sizeof(o.params) / sizeof(o.params[0]), o.params, obj};
});
m.def("fov_to_focal_length", py::overload_cast<int, float>(&ngp::fov_to_focal_length),
py::arg("resolution"), py::arg("degrees"))
.def("fov_to_focal_length", py::overload_cast<const ivec2&, const vec2&>(&fov_to_focal_length),
py::arg("resolution"), py::arg("degrees"))
.def("focal_length_to_fov", py::overload_cast<int, float>(&ngp::focal_length_to_fov),
py::arg("resolution"), py::arg("focal_length"))
.def("focal_length_to_fov", py::overload_cast<const ivec2&, const vec2&>(&ngp::focal_length_to_fov),
py::arg("resolution"), py::arg("focal_length"))
.def("relative_focal_length_to_fov", &ngp::relative_focal_length_to_fov,
py::arg("rel_focal_length"));
py::class_<fs::path>(m, "path").def(py::init<>()).def(py::init<const std::string&>());
py::implicitly_convertible<std::string, fs::path>();
py::class_<Testbed> testbed(m, "Testbed");
testbed.def(py::init<ETestbedMode>(), py::arg("mode") = ETestbedMode::None)
.def_readonly("mode", &Testbed::m_testbed_mode)
// General control
.def(
"init_window",
&Testbed::init_window,
"Init a GLFW window that shows real-time progress and a GUI. 'second_window' creates a second copy of the output in its own window.",
py::arg("width"),
py::arg("height"),
py::arg("hidden") = false,
py::arg("second_window") = false
)
.def("destroy_window", &Testbed::destroy_window, "Destroy the window again.")
.def(
"init_vr",
&Testbed::init_vr,
"Init rendering to a connected and active VR headset. Requires a window to have been previously created via `init_window`."
)
.def(
"view",
&Testbed::view,
"Outputs the currently displayed image by a given view (0 by default).",
py::arg("linear") = true,
py::arg("view") = 0
)
.def("view_camera", &Testbed::view_camera, "Outputs the current camera matrix of a given view (0 by default).", py::arg("view") = 0)
.def(
"add_src_view",
&Testbed::add_src_view,
"Adds a source view to the pool of views for reprojection.",
py::arg("camera_to_world"),
py::arg("fx"),
py::arg("fy"),
py::arg("cx"),
py::arg("cy"),
py::arg("img"),
py::arg("depth"),
py::arg("lens"),
py::arg("timestamp"),
py::arg("is_srgb") = false
)
.def("src_view_ids", &Testbed::src_view_ids, "Returns the IDs of all source views currently registered.")
.def("clear_src_views", &Testbed::clear_src_views, "Remove all views from the pool of views for reprojection.")
#ifdef NGP_GUI
.def_readwrite("keyboard_event_callback", &Testbed::m_keyboard_event_callback)
.def_readwrite("file_drop_callback", &Testbed::m_file_drop_callback)
.def("is_key_pressed", [](py::object& obj, int key) { return ImGui::IsKeyPressed(key); })
.def("is_key_down", [](py::object& obj, int key) { return ImGui::IsKeyDown(key); })
.def("is_alt_down", [](py::object& obj) { return ImGui::GetIO().KeyMods & ImGuiKeyModFlags_Alt; })
.def("is_ctrl_down", [](py::object& obj) { return ImGui::GetIO().KeyMods & ImGuiKeyModFlags_Ctrl; })
.def("is_shift_down", [](py::object& obj) { return ImGui::GetIO().KeyMods & ImGuiKeyModFlags_Shift; })
.def("is_super_down", [](py::object& obj) { return ImGui::GetIO().KeyMods & ImGuiKeyModFlags_Super; })
.def(
"screenshot",
&Testbed::screenshot,
"Takes a screenshot of the current window contents.",
py::arg("linear") = true,
py::arg("front_buffer") = true
)
.def_readwrite("vr_use_hidden_area_mask", &Testbed::m_vr_use_hidden_area_mask)
.def_readwrite("vr_use_depth_reproject", &Testbed::m_vr_use_depth_reproject)
#endif
.def("want_repl", &Testbed::want_repl, "returns true if the user clicked the 'I want a repl' button")
.def(
"frame", &Testbed::frame, py::call_guard<py::gil_scoped_release>(), "Process a single frame. Renders if a window was previously created."
)
.def(
"render",
&Testbed::render_to_cpu_rgba,
"Renders an image at the requested resolution. Does not require a window.",
py::arg("width") = 1920,
py::arg("height") = 1080,
py::arg("spp") = 1,
py::arg("linear") = true,
py::arg("start_t") = -1.f,
py::arg("end_t") = -1.f,
py::arg("fps") = 30.f,
py::arg("shutter_fraction") = 1.0f
)
.def(
"render_with_depth",
&Testbed::render_to_cpu,
"Renders an image at the requested resolution. Does not require a window.",
py::arg("width") = 1920,
py::arg("height") = 1080,
py::arg("spp") = 1,
py::arg("linear") = true,
py::arg("start_t") = -1.f,
py::arg("end_t") = -1.f,
py::arg("fps") = 30.f,
py::arg("shutter_fraction") = 1.0f
)
.def("reproject", &Testbed::reproject, "Reprojects an RGBA + depth image from a known camera view to another camera view.")
.def("reset_camera", &Testbed::reset_camera, "Reset camera to default state.")
.def(
"reset_accumulation",
&Testbed::reset_accumulation,
"Reset rendering accumulation.",
py::arg("due_to_camera_movement") = false,
py::arg("immediate_redraw") = true,
py::arg("reset_pip") = false
)
.def("load_camera_path", &Testbed::load_camera_path, py::arg("path"), "Load a camera path")
.def(
"load_file",
&Testbed::load_file,
py::arg("path"),
"Load a file and automatically determine how to handle it. Can be a snapshot, dataset, network config, or camera path."
)
.def_property("loop_animation", &Testbed::loop_animation, &Testbed::set_loop_animation)
// Interesting members.
.def_readwrite("reproject_min_t", &Testbed::m_reproject_min_t)
.def_readwrite("reproject_step_factor", &Testbed::m_reproject_step_factor)
.def_readwrite("reproject_parallax", &Testbed::m_reproject_parallax)
.def_readwrite("reproject_second_view", &Testbed::m_reproject_enable)
.def_readwrite("reproject_enable", &Testbed::m_reproject_enable)
.def_readwrite("reproject_visualize_src_views", &Testbed::m_reproject_visualize_src_views)
.def_readwrite("reproject_min_src_view_index", &Testbed::m_reproject_min_src_view_index)
.def_readwrite("reproject_max_src_view_index", &Testbed::m_reproject_max_src_view_index)
.def_readwrite("reproject_max_src_view_count", &Testbed::m_reproject_max_src_view_count)
.def("reproject_src_views_count", [](const Testbed& testbed) { return testbed.m_reproject_src_views.size(); })
.def_readwrite("reproject_reuse_last_frame", &Testbed::m_reproject_reuse_last_frame)
.def("init_camera_path_from_reproject_src_cameras", &Testbed::init_camera_path_from_reproject_src_cameras)
.def_readwrite("pm_enable", &Testbed::m_pm_enable)
.def_readwrite("dynamic_res", &Testbed::m_dynamic_res)
.def_readwrite("dynamic_res_target_fps", &Testbed::m_dynamic_res_target_fps)
.def_readwrite("fixed_res_factor", &Testbed::m_fixed_res_factor)
.def_readwrite("background_color", &Testbed::m_background_color)
.def_readwrite("render_transparency_as_checkerboard", &Testbed::m_render_transparency_as_checkerboard)
.def_readwrite("render_groundtruth", &Testbed::m_render_ground_truth)
.def_readwrite("render_ground_truth", &Testbed::m_render_ground_truth)
.def_readwrite("groundtruth_render_mode", &Testbed::m_ground_truth_render_mode)
.def_readwrite("render_mode", &Testbed::m_render_mode)
.def_readwrite("render_near_distance", &Testbed::m_render_near_distance)
.def_readwrite("slice_plane_z", &Testbed::m_slice_plane_z)
.def_readwrite("dof", &Testbed::m_aperture_size)
.def_readwrite("aperture_size", &Testbed::m_aperture_size)
.def_readwrite("autofocus", &Testbed::m_autofocus)
.def_readwrite("autofocus_target", &Testbed::m_autofocus_target)
.def_readwrite("camera_path", &Testbed::m_camera_path)
.def_readwrite("record_camera_path", &Testbed::m_record_camera_path)
.def_readwrite("floor_enable", &Testbed::m_floor_enable)
.def_readwrite("exposure", &Testbed::m_exposure)
.def_property("scale", &Testbed::scale, &Testbed::set_scale)
.def_readonly("bounding_radius", &Testbed::m_bounding_radius)
.def_readwrite("render_aabb", &Testbed::m_render_aabb)
.def_readwrite("render_aabb_to_local", &Testbed::m_render_aabb_to_local)
.def_readwrite("is_rendering", &Testbed::m_render)
.def_readwrite("aabb", &Testbed::m_aabb)
.def_readwrite("raw_aabb", &Testbed::m_raw_aabb)
.def_property("fov", &Testbed::fov, &Testbed::set_fov)
.def_property("fov_xy", &Testbed::fov_xy, &Testbed::set_fov_xy)
.def_readwrite("fov_axis", &Testbed::m_fov_axis)
.def_readwrite("relative_focal_length", &Testbed::m_relative_focal_length)
.def_readwrite("zoom", &Testbed::m_zoom)
.def_readwrite("screen_center", &Testbed::m_screen_center)
.def_readwrite("camera_matrix", &Testbed::m_camera)
.def_readwrite("up_dir", &Testbed::m_up_dir)
.def_readwrite("sun_dir", &Testbed::m_sun_dir)
.def_readwrite("default_camera", &Testbed::m_default_camera)
.def_property("look_at", &Testbed::look_at, &Testbed::set_look_at)
.def_property("view_dir", &Testbed::view_dir, &Testbed::set_view_dir)
.def_readwrite("camera_smoothing", &Testbed::m_camera_smoothing)
.def_readwrite("render_with_lens_distortion", &Testbed::m_render_with_lens_distortion)
.def_readwrite("render_lens", &Testbed::m_render_lens)
.def_property(
"display_gui",
[](py::object& obj) { return obj.cast<Testbed&>().m_imgui.mode == Testbed::ImGuiMode::Enabled; },
[](const py::object& obj, bool value) {
obj.cast<Testbed&>().m_imgui.mode = value ? Testbed::ImGuiMode::Enabled : Testbed::ImGuiMode::Disabled;
}
)
.def_property(
"video_path",
[](Testbed& obj) { return obj.m_imgui.video_path; },
[](Testbed& obj, const std::string& value) {
if (value.size() > Testbed::ImGuiVars::MAX_PATH_LEN)
throw std::runtime_error{"Video path is too long."};
strcpy(obj.m_imgui.video_path, value.c_str());
}
)
.def_readwrite("visualize_unit_cube", &Testbed::m_visualize_unit_cube)
.def_readwrite("snap_to_pixel_centers", &Testbed::m_snap_to_pixel_centers)
.def_readwrite("parallax_shift", &Testbed::m_parallax_shift)
.def_readwrite("color_space", &Testbed::m_color_space)
.def_readwrite("tonemap_curve", &Testbed::m_tonemap_curve)
.def_property(
"dlss",
[](py::object& obj) { return obj.cast<Testbed&>().m_dlss; },
[](const py::object& obj, bool value) {
if (value && !obj.cast<Testbed&>().m_dlss_provider) {
if (obj.cast<Testbed&>().m_render_window) {
throw std::runtime_error{"DLSS not supported."};
} else {
throw std::runtime_error{"DLSS requires a Window to be initialized via `init_window`."};
}
}
obj.cast<Testbed&>().m_dlss = value;
}
)
.def_readwrite("dlss_sharpening", &Testbed::m_dlss_sharpening)
.def_property(
"root_dir",
[](py::object& obj) { return obj.cast<Testbed&>().root_dir().str(); },
[](const py::object& obj, const std::string& value) { obj.cast<Testbed&>().set_root_dir(value); }
);
py::enum_<EGen3cCameraSource>(m, "Gen3cCameraSource")
.value("Fake", EGen3cCameraSource::Fake)
.value("Viewpoint", EGen3cCameraSource::Viewpoint)
.value("Authored", EGen3cCameraSource::Authored);
testbed
.def(
"set_gen3c_cb",
[](Testbed& testbed, const Testbed::gen3c_cb_t& cb) {
// testbed.m_gen3c_cb.reset(cb);
testbed.m_gen3c_cb = cb;
}
)
.def_readwrite("gen3c_info", &Testbed::m_gen3c_info)
.def_readwrite("gen3c_seed_path", &Testbed::m_gen3c_seed_path)
.def_readwrite("gen3c_auto_inference", &Testbed::m_gen3c_auto_inference)
.def_readwrite("gen3c_camera_source", &Testbed::m_gen3c_camera_source)
.def_readwrite("gen3c_translation_speed", &Testbed::m_gen3c_translation_speed)
.def_readwrite("gen3c_rotation_speed", &Testbed::m_gen3c_rotation_speed)
.def_readwrite("gen3c_inference_info", &Testbed::m_gen3c_inference_info)
.def_readwrite("gen3c_seeding_progress", &Testbed::m_gen3c_seeding_progress)
.def_readwrite("gen3c_inference_progress", &Testbed::m_gen3c_inference_progress)
.def_readwrite("gen3c_inference_is_connected", &Testbed::m_gen3c_inference_is_connected)
.def_readwrite("gen3c_render_with_gen3c", &Testbed::m_gen3c_render_with_gen3c)
// Output
.def_readwrite("gen3c_save_frames", &Testbed::m_gen3c_save_frames)
.def_readwrite("gen3c_display_frames", &Testbed::m_gen3c_display_frames)
.def_readwrite("gen3c_output_dir", &Testbed::m_gen3c_output_dir)
.def_readwrite("gen3c_show_cache_renderings", &Testbed::m_gen3c_show_cache_renderings);
py::class_<CameraKeyframe>(m, "CameraKeyframe")
.def(py::init<>())
.def(
py::init<const quat&, const vec3&, float, float>(),
py::arg("r"),
py::arg("t"),
py::arg("fov"),
py::arg("timestamp")
)
.def(
py::init<const mat4x3&, float, float>(),
py::arg("m"),
py::arg("fov"),
py::arg("timestamp")
)
.def_readwrite("R", &CameraKeyframe::R)
.def_readwrite("T", &CameraKeyframe::T)
.def_readwrite("fov", &CameraKeyframe::fov)
.def_readwrite("timestamp", &CameraKeyframe::timestamp)
.def("m", &CameraKeyframe::m)
.def("from_m", &CameraKeyframe::from_m, py::arg("rv"))
.def("same_pos_as", &CameraKeyframe::same_pos_as, py::arg("rhs"));
py::enum_<EEditingKernel>(m, "EditingKernel")
.value("None", EEditingKernel::None)
.value("Gaussian", EEditingKernel::Gaussian)
.value("Quartic", EEditingKernel::Quartic)
.value("Hat", EEditingKernel::Hat)
.value("Box", EEditingKernel::Box);
py::class_<CameraPath::RenderSettings>(m, "CameraPathRenderSettings")
.def_readwrite("resolution", &CameraPath::RenderSettings::resolution)
.def_readwrite("spp", &CameraPath::RenderSettings::spp)
.def_readwrite("fps", &CameraPath::RenderSettings::fps)
.def_readwrite("shutter_fraction", &CameraPath::RenderSettings::shutter_fraction)
.def_readwrite("quality", &CameraPath::RenderSettings::quality);
py::class_<CameraPath::Pos>(m, "CameraPathPos").def_readwrite("kfidx", &CameraPath::Pos::kfidx).def_readwrite("t", &CameraPath::Pos::t);
py::class_<CameraPath>(m, "CameraPath")
.def_readwrite("keyframes", &CameraPath::keyframes)
.def_readwrite("update_cam_from_path", &CameraPath::update_cam_from_path)
.def_readwrite("play_time", &CameraPath::play_time)
.def_readwrite("auto_play_speed", &CameraPath::auto_play_speed)
.def_readwrite("default_duration_seconds", &CameraPath::default_duration_seconds)
.def_readwrite("loop", &CameraPath::loop)
.def_readwrite("keyframe_subsampling", &CameraPath::keyframe_subsampling)
.def_property("duration_seconds", &CameraPath::duration_seconds, &CameraPath::set_duration_seconds)
.def_readwrite("editing_kernel_type", &CameraPath::editing_kernel_type)
.def_readwrite("editing_kernel_radius", &CameraPath::editing_kernel_radius)
.def_readwrite("spline_order", &CameraPath::spline_order)
.def_readwrite("render_settings", &CameraPath::render_settings)
.def_readwrite("rendering", &CameraPath::rendering)
.def_readwrite("render_frame_idx", &CameraPath::render_frame_idx)
.def_readwrite("render_start_time", &CameraPath::render_start_time)
.def_readwrite("render_frame_end_camera", &CameraPath::render_frame_end_camera)
.def("clear", &CameraPath::clear)
.def("has_valid_timestamps", &CameraPath::has_valid_timestamps)
.def("make_keyframe_timestamps_equidistant", &CameraPath::make_keyframe_timestamps_equidistant)
.def("sanitize_keyframes", &CameraPath::sanitize_keyframes)
.def("get_pos", &CameraPath::get_pos, py::arg("playtime"))
.def("get_playtime", &CameraPath::get_playtime, py::arg("i"))
.def("get_keyframe", &CameraPath::get_keyframe, py::arg("i"))
.def("eval_camera_path", &CameraPath::eval_camera_path, py::arg("t"))
.def("save", &CameraPath::save, py::arg("path"))
.def("load", &CameraPath::load, py::arg("path"), py::arg("first_xform"))
.def(
"add_camera",
&CameraPath::add_camera,
py::arg("camera"),
py::arg("fov"),
py::arg("timestamp")
);
// Minimal logging framework (tlog)
// https://github.com/Tom94/tinylogger/
py::module_ tlog = m.def_submodule("tlog", "Tiny logging framework");
tlog.def("none", [](const std::string &s) { tlog::none() << s; })
.def("info", [](const std::string &s) { tlog::info() << s; })
.def("debug", [](const std::string &s) { tlog::debug() << s; })
.def("warning", [](const std::string &s) { tlog::warning() << s; })
.def("error", [](const std::string &s) { tlog::error() << s; })
.def("success", [](const std::string &s) { tlog::success() << s; });
}
} // namespace ngp
|