File size: 33,426 Bytes
28451f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
/*
 * SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/** @file   python_api.cpp
 *  @author Thomas Müller & Alex Evans, NVIDIA
 */

#include <neural-graphics-primitives/common_device.cuh>
#include <neural-graphics-primitives/testbed.h>
#include <neural-graphics-primitives/thread_pool.h>

#include <json/json.hpp>

#include <pybind11/functional.h>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11_json/pybind11_json.hpp>
#include <tiny-cuda-nn/vec_pybind11.h>
#include <tinylogger/tinylogger.h>

#include <filesystem/path.h>

#ifdef NGP_GUI
#	include <imgui/imgui.h>
#	ifdef _WIN32
#		include <GL/gl3w.h>
#	else
#		include <GL/glew.h>
#	endif
#	include <GLFW/glfw3.h>
#endif

using namespace nlohmann;
namespace py = pybind11;

namespace ngp {

// Returns RGBA and depth buffers
std::pair<py::array_t<float>, py::array_t<float>>
	Testbed::render_to_cpu(int width, int height, int spp, bool linear, float start_time, float end_time, float fps, float shutter_fraction) {
	m_windowless_render_surface.resize({width, height});
	m_windowless_render_surface.reset_accumulation();

	if (end_time < 0.f) {
		end_time = start_time;
	}

	bool path_animation_enabled = start_time >= 0.f;
	if (!path_animation_enabled) { // the old code disabled camera smoothing for non-path renders; so we preserve that behaviour
		m_smoothed_camera = m_camera;
	}

	// this rendering code assumes that the intra-frame camera motion starts from m_smoothed_camera (ie where we left off) to allow for EMA
	// camera smoothing. in the case of a camera path animation, at the very start of the animation, we have yet to initialize
	// smoothed_camera to something sensible
	// - it will just be the default boot position. oops!
	// that led to the first frame having a crazy streak from the default camera position to the start of the path.
	// so we detect that case and explicitly force the current matrix to the start of the path
	if (start_time == 0.f) {
		set_camera_from_time(start_time);
		m_smoothed_camera = m_camera;
	}

	auto start_cam_matrix = m_smoothed_camera;

	// now set up the end-of-frame camera matrix if we are moving along a path
	if (path_animation_enabled) {
		set_camera_from_time(end_time);
		apply_camera_smoothing(1000.f / fps);
	}

	auto end_cam_matrix = m_smoothed_camera;
	auto prev_camera_matrix = m_smoothed_camera;

	for (int i = 0; i < spp; ++i) {
		float start_alpha = ((float)i) / (float)spp * shutter_fraction;
		float end_alpha = ((float)i + 1.0f) / (float)spp * shutter_fraction;

		auto sample_start_cam_matrix = start_cam_matrix;
		auto sample_end_cam_matrix = camera_log_lerp(start_cam_matrix, end_cam_matrix, shutter_fraction);
		if (i == 0) {
			prev_camera_matrix = sample_start_cam_matrix;
		}

		if (path_animation_enabled) {
			set_camera_from_time(start_time + (end_time - start_time) * (start_alpha + end_alpha) / 2.0f);
			m_smoothed_camera = m_camera;
		}

		if (m_autofocus) {
			autofocus();
		}

		render_frame(
			m_stream.get(),
			sample_start_cam_matrix,
			sample_end_cam_matrix,
			prev_camera_matrix,
			m_screen_center,
			m_relative_focal_length,
			{}, // foveation
			{}, // prev foveation
			{}, // lens
			m_visualized_dimension,
			m_windowless_render_surface,
			!linear
		);
		prev_camera_matrix = sample_start_cam_matrix;
	}

	// For cam smoothing when rendering the next frame.
	m_smoothed_camera = end_cam_matrix;

	py::array_t<float> result_rgba({height, width, 4});
	py::buffer_info buf_rgba = result_rgba.request();

	py::array_t<float> result_depth({height, width});
	py::buffer_info buf_depth = result_depth.request();

	CUDA_CHECK_THROW(cudaMemcpy2DFromArray(
		buf_rgba.ptr, width * sizeof(float) * 4, m_windowless_render_surface.surface_provider().array(), 0, 0, width * sizeof(float) * 4, height, cudaMemcpyDeviceToHost
	));

	CUDA_CHECK_THROW(
		cudaMemcpy(buf_depth.ptr, m_windowless_render_surface.depth_buffer(), height * width * sizeof(float), cudaMemcpyDeviceToHost)
	);

	return {result_rgba, result_depth};
}

py::array_t<float> Testbed::render_to_cpu_rgba(
	int width, int height, int spp, bool linear, float start_time, float end_time, float fps, float shutter_fraction
) {
	return render_to_cpu(width, height, spp, linear, start_time, end_time, fps, shutter_fraction).first;
}

py::array_t<float> Testbed::view(bool linear, size_t view_idx) const {
	if (m_views.size() <= view_idx) {
		throw std::runtime_error{fmt::format("View #{} does not exist.", view_idx)};
	}

	auto& view = m_views.at(view_idx);
	auto& render_buffer = *view.render_buffer;

	auto res = render_buffer.out_resolution();

	py::array_t<float> result({res.y, res.x, 4});
	py::buffer_info buf = result.request();
	float* data = (float*)buf.ptr;

	CUDA_CHECK_THROW(cudaMemcpy2DFromArray(
		data, res.x * sizeof(float) * 4, render_buffer.surface_provider().array(), 0, 0, res.x * sizeof(float) * 4, res.y, cudaMemcpyDeviceToHost
	));

	if (linear) {
		ThreadPool{}.parallel_for<size_t>(0, res.y, [&](size_t y) {
			size_t base = y * res.x;
			for (uint32_t x = 0; x < res.x; ++x) {
				size_t px = base + x;
				data[px * 4 + 0] = srgb_to_linear(data[px * 4 + 0]);
				data[px * 4 + 1] = srgb_to_linear(data[px * 4 + 1]);
				data[px * 4 + 2] = srgb_to_linear(data[px * 4 + 2]);
			}
		});
	}

	return result;
}

std::pair<py::array_t<float>, py::array_t<uint32_t>>
	Testbed::reproject(const mat4x3& src, const py::array_t<float>& src_img, const py::array_t<float>& src_depth, const mat4x3& dst) {

	py::buffer_info src_img_buf = src_img.request();
	py::buffer_info src_depth_buf = src_depth.request();

	if (src_img_buf.ndim != 3) {
		throw std::runtime_error{"src image should be (H,W,C) where C=4"};
	}

	if (src_img_buf.shape[2] != 4) {
		throw std::runtime_error{"src image should be (H,W,C) where C=4"};
	}

	if (src_depth_buf.ndim != 2) {
		throw std::runtime_error{"src depth should be (H,W)"};
	}

	if (src_img_buf.shape[0] != src_depth_buf.shape[0] || src_img_buf.shape[1] != src_depth_buf.shape[1]) {
		throw std::runtime_error{"image and depth dimensions don't match"};
	}

	const ivec2 src_res = {(int)src_img_buf.shape[1], (int)src_img_buf.shape[0]};
	const ivec2 dst_res = src_res; // For now

	auto src_render_buffer = std::make_shared<CudaRenderBuffer>(std::make_shared<CudaSurface2D>());
	src_render_buffer->resize(src_res);

	auto dst_render_buffer = std::make_shared<CudaRenderBuffer>(std::make_shared<CudaSurface2D>());
	dst_render_buffer->resize(dst_res);

	View src_view, dst_view;

	src_view.camera0 = src_view.camera1 = src_view.prev_camera = src;
	src_view.device = &primary_device();
	src_view.foveation = src_view.prev_foveation = {};
	src_view.screen_center = vec2(0.5f);
	src_view.full_resolution = src_res;
	src_view.visualized_dimension = -1;
	src_view.relative_focal_length = m_relative_focal_length;
	src_view.render_buffer = src_render_buffer;

	dst_view.camera0 = dst_view.camera1 = dst_view.prev_camera = dst;
	dst_view.device = &primary_device();
	dst_view.foveation = dst_view.prev_foveation = {};
	dst_view.screen_center = vec2(0.5f);
	dst_view.full_resolution = dst_res;
	dst_view.visualized_dimension = -1;
	dst_view.relative_focal_length = m_relative_focal_length;
	dst_view.render_buffer = dst_render_buffer;

	CUDA_CHECK_THROW(cudaMemcpyAsync(
		src_render_buffer->frame_buffer(), src_img_buf.ptr, product(src_res) * sizeof(float) * 4, cudaMemcpyHostToDevice, m_stream.get()
	));
	CUDA_CHECK_THROW(cudaMemcpyAsync(
		src_render_buffer->depth_buffer(), src_depth_buf.ptr, product(src_res) * sizeof(float), cudaMemcpyHostToDevice, m_stream.get()
	));

	std::vector<const View*> src_views = {&src_view};
	reproject_views(src_views, dst_view);

	py::array_t<float> result_rgba({dst_res.y, dst_res.x, 4});
	py::buffer_info buf_rgba = result_rgba.request();

	py::array_t<uint32_t> result_idx({dst_res.y, dst_res.x});
	py::buffer_info buf_idx = result_idx.request();

	CUDA_CHECK_THROW(cudaMemcpyAsync(
		buf_rgba.ptr, dst_render_buffer->frame_buffer(), product(dst_res) * sizeof(float) * 4, cudaMemcpyDeviceToHost, m_stream.get()
	));

	auto idx_buffer = GPUImage<uint32_t>(dst_res, m_stream.get());

	parallel_for_gpu(
		m_stream.get(),
		idx_buffer.n_elements(),
		[out = idx_buffer.view(), in = dst_view.index_field.view(), src_width = src_res.x, dst_width = dst_res.x] __device__(size_t i) {
			ivec2 idx = ivec2(i % dst_width, i / dst_width);
			ivec2 src_idx = in(idx.y, idx.x).px;
			out(idx.y, idx.x) = src_idx.x + src_idx.y * src_width;
		}
	);

	CUDA_CHECK_THROW(
		cudaMemcpyAsync(buf_idx.ptr, idx_buffer.data(), product(dst_res) * sizeof(uint32_t), cudaMemcpyDeviceToHost, m_stream.get())
	);

	return {result_rgba, result_idx};
}

uint32_t Testbed::add_src_view(
	mat4x3 camera_to_world, float fx, float fy, float cx, float cy, Lens lens, pybind11::array_t<float> img, pybind11::array_t<float> depth, float timestamp, bool is_srgb
) {
	py::buffer_info src_img_buf = img.request();
	py::buffer_info src_depth_buf = depth.request();

	if (src_img_buf.ndim != 3) {
		throw std::runtime_error{"src image should be (H,W,C) where C=4"};
	}

	if (src_img_buf.shape[2] != 4) {
		throw std::runtime_error{"src image should be (H,W,C) where C=4"};
	}

	if (src_depth_buf.ndim != 2) {
		throw std::runtime_error{"src depth should be (H,W)"};
	}

	if (src_img_buf.shape[0] != src_depth_buf.shape[0] || src_img_buf.shape[1] != src_depth_buf.shape[1]) {
		throw std::runtime_error{"image and depth dimensions don't match"};
	}

	const ivec2 src_res = {(int)src_img_buf.shape[1], (int)src_img_buf.shape[0]};

	static uint32_t id = 0;

	m_reproject_src_views.emplace_back();
	if (m_reproject_max_src_view_count > 0 && m_reproject_src_views.size() > (size_t)m_reproject_max_src_view_count) {
		m_reproject_src_views.pop_front();
	}

	auto& src_view = m_reproject_src_views.back();
	src_view.uid = id++;
	src_view.camera0 = src_view.camera1 = src_view.prev_camera = camera_to_world;
	src_view.device = &primary_device();
	src_view.foveation = src_view.prev_foveation = {};
	src_view.screen_center = vec2(cx, cy);
	src_view.full_resolution = src_res;
	src_view.visualized_dimension = -1;
	src_view.relative_focal_length = vec2(fx, fy) / (float)src_res[m_fov_axis];
	src_view.render_buffer = std::make_shared<CudaRenderBuffer>(std::make_shared<CudaSurface2D>());
	src_view.render_buffer->resize(src_res);
	src_view.lens = lens;

	CUDA_CHECK_THROW(cudaMemcpyAsync(
		src_view.render_buffer->frame_buffer(), src_img_buf.ptr, product(src_res) * sizeof(float) * 4, cudaMemcpyHostToDevice, m_stream.get()
	));
	CUDA_CHECK_THROW(cudaMemcpyAsync(
		src_view.render_buffer->depth_buffer(), src_depth_buf.ptr, product(src_res) * sizeof(float), cudaMemcpyHostToDevice, m_stream.get()
	));

	if (is_srgb) {
		// Convert from sRGB to linear on the GPU directly
		parallel_for_gpu(
			m_stream.get(),
			product(src_res) * 4,
			[values = (float *) src_view.render_buffer->frame_buffer()] __device__(size_t i) {
				if ((i % 4) == 3) {
					// Don't linearize the alpha channel
					return;
				}
				values[i] = srgb_to_linear(values[i]);
			}
		);
	}

	return src_view.uid;
}


pybind11::array_t<uint32_t> Testbed::src_view_ids() const {
	py::array_t<uint32_t> result({(int)m_reproject_src_views.size()});
	py::buffer_info buf = result.request();
	uint32_t* data = (uint32_t*)buf.ptr;
	for (size_t i = 0; i < m_reproject_src_views.size(); ++i) {
		data[i] = m_reproject_src_views[i].uid;
	}
	return result;
}

#ifdef NGP_GUI
py::array_t<float> Testbed::screenshot(bool linear, bool front_buffer) const {
	std::vector<float> tmp(product(m_window_res) * 4);
	glReadBuffer(front_buffer ? GL_FRONT : GL_BACK);
	glReadPixels(0, 0, m_window_res.x, m_window_res.y, GL_RGBA, GL_FLOAT, tmp.data());

	py::array_t<float> result({m_window_res.y, m_window_res.x, 4});
	py::buffer_info buf = result.request();
	float* data = (float*)buf.ptr;

	// Linear, alpha premultiplied, Y flipped
	ThreadPool{}.parallel_for<size_t>(0, m_window_res.y, [&](size_t y) {
		size_t base = y * m_window_res.x;
		size_t base_reverse = (m_window_res.y - y - 1) * m_window_res.x;
		for (uint32_t x = 0; x < m_window_res.x; ++x) {
			size_t px = base + x;
			size_t px_reverse = base_reverse + x;
			data[px_reverse * 4 + 0] = linear ? srgb_to_linear(tmp[px * 4 + 0]) : tmp[px * 4 + 0];
			data[px_reverse * 4 + 1] = linear ? srgb_to_linear(tmp[px * 4 + 1]) : tmp[px * 4 + 1];
			data[px_reverse * 4 + 2] = linear ? srgb_to_linear(tmp[px * 4 + 2]) : tmp[px * 4 + 2];
			data[px_reverse * 4 + 3] = tmp[px * 4 + 3];
		}
	});

	return result;
}
#endif

PYBIND11_MODULE(pyngp, m) {
	m.doc() = "Gen3C GUI";

	m.def("free_temporary_memory", &free_all_gpu_memory_arenas);

	py::enum_<ETestbedMode>(m, "TestbedMode")
		.value("Gen3c", ETestbedMode::Gen3c)
		.value("None", ETestbedMode::None)
		.export_values();

	m.def("mode_from_scene", &mode_from_scene);
	m.def("mode_from_string", &mode_from_string);

	py::enum_<EGroundTruthRenderMode>(m, "GroundTruthRenderMode")
		.value("Shade", EGroundTruthRenderMode::Shade)
		.value("Depth", EGroundTruthRenderMode::Depth)
		.export_values();

	py::enum_<ERenderMode>(m, "RenderMode")
		.value("AO", ERenderMode::AO)
		.value("Shade", ERenderMode::Shade)
		.value("Normals", ERenderMode::Normals)
		.value("Positions", ERenderMode::Positions)
		.value("Depth", ERenderMode::Depth)
		.value("Distortion", ERenderMode::Distortion)
		.value("Cost", ERenderMode::Cost)
		.value("Slice", ERenderMode::Slice)
		.export_values();

	py::enum_<ERandomMode>(m, "RandomMode")
		.value("Random", ERandomMode::Random)
		.value("Halton", ERandomMode::Halton)
		.value("Sobol", ERandomMode::Sobol)
		.value("Stratified", ERandomMode::Stratified)
		.export_values();

	py::enum_<ELossType>(m, "LossType")
		.value("L2", ELossType::L2)
		.value("L1", ELossType::L1)
		.value("Mape", ELossType::Mape)
		.value("Smape", ELossType::Smape)
		.value("Huber", ELossType::Huber)
		// Legacy: we used to refer to the Huber loss
		// (L2 near zero, L1 further away) as "SmoothL1".
		.value("SmoothL1", ELossType::Huber)
		.value("LogL1", ELossType::LogL1)
		.value("RelativeL2", ELossType::RelativeL2)
		.export_values();

	py::enum_<ESDFGroundTruthMode>(m, "SDFGroundTruthMode")
		.value("RaytracedMesh", ESDFGroundTruthMode::RaytracedMesh)
		.value("SpheretracedMesh", ESDFGroundTruthMode::SpheretracedMesh)
		.value("SDFBricks", ESDFGroundTruthMode::SDFBricks)
		.export_values();

	py::enum_<EMeshSdfMode>(m, "MeshSdfMode")
		.value("Watertight", EMeshSdfMode::Watertight)
		.value("Raystab", EMeshSdfMode::Raystab)
		.value("PathEscape", EMeshSdfMode::PathEscape)
		.export_values();

	py::enum_<EColorSpace>(m, "ColorSpace").value("Linear", EColorSpace::Linear).value("SRGB", EColorSpace::SRGB).export_values();

	py::enum_<ETonemapCurve>(m, "TonemapCurve")
		.value("Identity", ETonemapCurve::Identity)
		.value("ACES", ETonemapCurve::ACES)
		.value("Hable", ETonemapCurve::Hable)
		.value("Reinhard", ETonemapCurve::Reinhard)
		.export_values();

	py::enum_<ELensMode>(m, "LensMode")
		.value("Perspective", ELensMode::Perspective)
		.value("OpenCV", ELensMode::OpenCV)
		.value("FTheta", ELensMode::FTheta)
		.value("LatLong", ELensMode::LatLong)
		.value("OpenCVFisheye", ELensMode::OpenCVFisheye)
		.value("Equirectangular", ELensMode::Equirectangular)
		.value("Orthographic", ELensMode::Orthographic)
		.export_values();


	py::class_<BoundingBox>(m, "BoundingBox")
		.def(py::init<>())
		.def(py::init<const vec3&, const vec3&>())
		.def("center", &BoundingBox::center)
		.def("contains", &BoundingBox::contains)
		.def("diag", &BoundingBox::diag)
		.def("distance", &BoundingBox::distance)
		.def("distance_sq", &BoundingBox::distance_sq)
		.def("enlarge", py::overload_cast<const vec3&>(&BoundingBox::enlarge))
		.def("enlarge", py::overload_cast<const BoundingBox&>(&BoundingBox::enlarge))
		.def("get_vertices", &BoundingBox::get_vertices)
		.def("inflate", &BoundingBox::inflate)
		.def("intersection", &BoundingBox::intersection)
		.def("intersects", py::overload_cast<const BoundingBox&>(&BoundingBox::intersects, py::const_))
		.def("ray_intersect", &BoundingBox::ray_intersect)
		.def("relative_pos", &BoundingBox::relative_pos)
		.def("signed_distance", &BoundingBox::signed_distance)
		.def_readwrite("min", &BoundingBox::min)
		.def_readwrite("max", &BoundingBox::max);

	py::class_<Lens> lens(m, "Lens");
	lens.def(py::init<>()).def_readwrite("mode", &Lens::mode).def_property_readonly("params", [](py::object& obj) {
		Lens& o = obj.cast<Lens&>();
		return py::array{sizeof(o.params) / sizeof(o.params[0]), o.params, obj};
	});

	m.def("fov_to_focal_length", py::overload_cast<int, float>(&ngp::fov_to_focal_length),
		  py::arg("resolution"), py::arg("degrees"))
	 .def("fov_to_focal_length", py::overload_cast<const ivec2&, const vec2&>(&fov_to_focal_length),
		  py::arg("resolution"), py::arg("degrees"))
	 .def("focal_length_to_fov", py::overload_cast<int, float>(&ngp::focal_length_to_fov),
		  py::arg("resolution"), py::arg("focal_length"))
	 .def("focal_length_to_fov", py::overload_cast<const ivec2&, const vec2&>(&ngp::focal_length_to_fov),
		  py::arg("resolution"), py::arg("focal_length"))
	 .def("relative_focal_length_to_fov", &ngp::relative_focal_length_to_fov,
		  py::arg("rel_focal_length"));

	py::class_<fs::path>(m, "path").def(py::init<>()).def(py::init<const std::string&>());

	py::implicitly_convertible<std::string, fs::path>();

	py::class_<Testbed> testbed(m, "Testbed");
	testbed.def(py::init<ETestbedMode>(), py::arg("mode") = ETestbedMode::None)
		.def_readonly("mode", &Testbed::m_testbed_mode)
		// General control
		.def(
			"init_window",
			&Testbed::init_window,
			"Init a GLFW window that shows real-time progress and a GUI. 'second_window' creates a second copy of the output in its own window.",
			py::arg("width"),
			py::arg("height"),
			py::arg("hidden") = false,
			py::arg("second_window") = false
		)
		.def("destroy_window", &Testbed::destroy_window, "Destroy the window again.")
		.def(
			"init_vr",
			&Testbed::init_vr,
			"Init rendering to a connected and active VR headset. Requires a window to have been previously created via `init_window`."
		)
		.def(
			"view",
			&Testbed::view,
			"Outputs the currently displayed image by a given view (0 by default).",
			py::arg("linear") = true,
			py::arg("view") = 0
		)
		.def("view_camera", &Testbed::view_camera, "Outputs the current camera matrix of a given view (0 by default).", py::arg("view") = 0)
		.def(
			"add_src_view",
			&Testbed::add_src_view,
			"Adds a source view to the pool of views for reprojection.",
			py::arg("camera_to_world"),
			py::arg("fx"),
			py::arg("fy"),
			py::arg("cx"),
			py::arg("cy"),
			py::arg("img"),
			py::arg("depth"),
			py::arg("lens"),
			py::arg("timestamp"),
			py::arg("is_srgb") = false
		)
		.def("src_view_ids", &Testbed::src_view_ids, "Returns the IDs of all source views currently registered.")
		.def("clear_src_views", &Testbed::clear_src_views, "Remove all views from the pool of views for reprojection.")
#ifdef NGP_GUI
		.def_readwrite("keyboard_event_callback", &Testbed::m_keyboard_event_callback)
		.def_readwrite("file_drop_callback", &Testbed::m_file_drop_callback)
		.def("is_key_pressed", [](py::object& obj, int key) { return ImGui::IsKeyPressed(key); })
		.def("is_key_down", [](py::object& obj, int key) { return ImGui::IsKeyDown(key); })
		.def("is_alt_down", [](py::object& obj) { return ImGui::GetIO().KeyMods & ImGuiKeyModFlags_Alt; })
		.def("is_ctrl_down", [](py::object& obj) { return ImGui::GetIO().KeyMods & ImGuiKeyModFlags_Ctrl; })
		.def("is_shift_down", [](py::object& obj) { return ImGui::GetIO().KeyMods & ImGuiKeyModFlags_Shift; })
		.def("is_super_down", [](py::object& obj) { return ImGui::GetIO().KeyMods & ImGuiKeyModFlags_Super; })
		.def(
			"screenshot",
			&Testbed::screenshot,
			"Takes a screenshot of the current window contents.",
			py::arg("linear") = true,
			py::arg("front_buffer") = true
		)
		.def_readwrite("vr_use_hidden_area_mask", &Testbed::m_vr_use_hidden_area_mask)
		.def_readwrite("vr_use_depth_reproject", &Testbed::m_vr_use_depth_reproject)
#endif
		.def("want_repl", &Testbed::want_repl, "returns true if the user clicked the 'I want a repl' button")
		.def(
			"frame", &Testbed::frame, py::call_guard<py::gil_scoped_release>(), "Process a single frame. Renders if a window was previously created."
		)
		.def(
			"render",
			&Testbed::render_to_cpu_rgba,
			"Renders an image at the requested resolution. Does not require a window.",
			py::arg("width") = 1920,
			py::arg("height") = 1080,
			py::arg("spp") = 1,
			py::arg("linear") = true,
			py::arg("start_t") = -1.f,
			py::arg("end_t") = -1.f,
			py::arg("fps") = 30.f,
			py::arg("shutter_fraction") = 1.0f
		)
		.def(
			"render_with_depth",
			&Testbed::render_to_cpu,
			"Renders an image at the requested resolution. Does not require a window.",
			py::arg("width") = 1920,
			py::arg("height") = 1080,
			py::arg("spp") = 1,
			py::arg("linear") = true,
			py::arg("start_t") = -1.f,
			py::arg("end_t") = -1.f,
			py::arg("fps") = 30.f,
			py::arg("shutter_fraction") = 1.0f
		)
		.def("reproject", &Testbed::reproject, "Reprojects an RGBA + depth image from a known camera view to another camera view.")
		.def("reset_camera", &Testbed::reset_camera, "Reset camera to default state.")
		.def(
			"reset_accumulation",
			&Testbed::reset_accumulation,
			"Reset rendering accumulation.",
			py::arg("due_to_camera_movement") = false,
			py::arg("immediate_redraw") = true,
			py::arg("reset_pip") = false
		)
		.def("load_camera_path", &Testbed::load_camera_path, py::arg("path"), "Load a camera path")
		.def(
			"load_file",
			&Testbed::load_file,
			py::arg("path"),
			"Load a file and automatically determine how to handle it. Can be a snapshot, dataset, network config, or camera path."
		)
		.def_property("loop_animation", &Testbed::loop_animation, &Testbed::set_loop_animation)
		// Interesting members.
		.def_readwrite("reproject_min_t", &Testbed::m_reproject_min_t)
		.def_readwrite("reproject_step_factor", &Testbed::m_reproject_step_factor)
		.def_readwrite("reproject_parallax", &Testbed::m_reproject_parallax)
		.def_readwrite("reproject_second_view", &Testbed::m_reproject_enable)
		.def_readwrite("reproject_enable", &Testbed::m_reproject_enable)
		.def_readwrite("reproject_visualize_src_views", &Testbed::m_reproject_visualize_src_views)
		.def_readwrite("reproject_min_src_view_index", &Testbed::m_reproject_min_src_view_index)
		.def_readwrite("reproject_max_src_view_index", &Testbed::m_reproject_max_src_view_index)
		.def_readwrite("reproject_max_src_view_count", &Testbed::m_reproject_max_src_view_count)
		.def("reproject_src_views_count", [](const Testbed& testbed) { return testbed.m_reproject_src_views.size(); })
		.def_readwrite("reproject_reuse_last_frame", &Testbed::m_reproject_reuse_last_frame)
		.def("init_camera_path_from_reproject_src_cameras", &Testbed::init_camera_path_from_reproject_src_cameras)
		.def_readwrite("pm_enable", &Testbed::m_pm_enable)
		.def_readwrite("dynamic_res", &Testbed::m_dynamic_res)
		.def_readwrite("dynamic_res_target_fps", &Testbed::m_dynamic_res_target_fps)
		.def_readwrite("fixed_res_factor", &Testbed::m_fixed_res_factor)
		.def_readwrite("background_color", &Testbed::m_background_color)
		.def_readwrite("render_transparency_as_checkerboard", &Testbed::m_render_transparency_as_checkerboard)
		.def_readwrite("render_groundtruth", &Testbed::m_render_ground_truth)
		.def_readwrite("render_ground_truth", &Testbed::m_render_ground_truth)
		.def_readwrite("groundtruth_render_mode", &Testbed::m_ground_truth_render_mode)
		.def_readwrite("render_mode", &Testbed::m_render_mode)
		.def_readwrite("render_near_distance", &Testbed::m_render_near_distance)
		.def_readwrite("slice_plane_z", &Testbed::m_slice_plane_z)
		.def_readwrite("dof", &Testbed::m_aperture_size)
		.def_readwrite("aperture_size", &Testbed::m_aperture_size)
		.def_readwrite("autofocus", &Testbed::m_autofocus)
		.def_readwrite("autofocus_target", &Testbed::m_autofocus_target)
		.def_readwrite("camera_path", &Testbed::m_camera_path)
		.def_readwrite("record_camera_path", &Testbed::m_record_camera_path)
		.def_readwrite("floor_enable", &Testbed::m_floor_enable)
		.def_readwrite("exposure", &Testbed::m_exposure)
		.def_property("scale", &Testbed::scale, &Testbed::set_scale)
		.def_readonly("bounding_radius", &Testbed::m_bounding_radius)
		.def_readwrite("render_aabb", &Testbed::m_render_aabb)
		.def_readwrite("render_aabb_to_local", &Testbed::m_render_aabb_to_local)
		.def_readwrite("is_rendering", &Testbed::m_render)
		.def_readwrite("aabb", &Testbed::m_aabb)
		.def_readwrite("raw_aabb", &Testbed::m_raw_aabb)
		.def_property("fov", &Testbed::fov, &Testbed::set_fov)
		.def_property("fov_xy", &Testbed::fov_xy, &Testbed::set_fov_xy)
		.def_readwrite("fov_axis", &Testbed::m_fov_axis)
		.def_readwrite("relative_focal_length", &Testbed::m_relative_focal_length)
		.def_readwrite("zoom", &Testbed::m_zoom)
		.def_readwrite("screen_center", &Testbed::m_screen_center)
		.def_readwrite("camera_matrix", &Testbed::m_camera)
		.def_readwrite("up_dir", &Testbed::m_up_dir)
		.def_readwrite("sun_dir", &Testbed::m_sun_dir)
		.def_readwrite("default_camera", &Testbed::m_default_camera)
		.def_property("look_at", &Testbed::look_at, &Testbed::set_look_at)
		.def_property("view_dir", &Testbed::view_dir, &Testbed::set_view_dir)
		.def_readwrite("camera_smoothing", &Testbed::m_camera_smoothing)
		.def_readwrite("render_with_lens_distortion", &Testbed::m_render_with_lens_distortion)
		.def_readwrite("render_lens", &Testbed::m_render_lens)
		.def_property(
			"display_gui",
			[](py::object& obj) { return obj.cast<Testbed&>().m_imgui.mode == Testbed::ImGuiMode::Enabled; },
			[](const py::object& obj, bool value) {
				obj.cast<Testbed&>().m_imgui.mode = value ? Testbed::ImGuiMode::Enabled : Testbed::ImGuiMode::Disabled;
			}
		)
		.def_property(
			"video_path",
			[](Testbed& obj) { return obj.m_imgui.video_path; },
			[](Testbed& obj, const std::string& value) {
				if (value.size() > Testbed::ImGuiVars::MAX_PATH_LEN)
					throw std::runtime_error{"Video path is too long."};
				strcpy(obj.m_imgui.video_path, value.c_str());
			}
		)
		.def_readwrite("visualize_unit_cube", &Testbed::m_visualize_unit_cube)
		.def_readwrite("snap_to_pixel_centers", &Testbed::m_snap_to_pixel_centers)
		.def_readwrite("parallax_shift", &Testbed::m_parallax_shift)
		.def_readwrite("color_space", &Testbed::m_color_space)
		.def_readwrite("tonemap_curve", &Testbed::m_tonemap_curve)
		.def_property(
			"dlss",
			[](py::object& obj) { return obj.cast<Testbed&>().m_dlss; },
			[](const py::object& obj, bool value) {
				if (value && !obj.cast<Testbed&>().m_dlss_provider) {
					if (obj.cast<Testbed&>().m_render_window) {
						throw std::runtime_error{"DLSS not supported."};
					} else {
						throw std::runtime_error{"DLSS requires a Window to be initialized via `init_window`."};
					}
				}

				obj.cast<Testbed&>().m_dlss = value;
			}
		)
		.def_readwrite("dlss_sharpening", &Testbed::m_dlss_sharpening)
		.def_property(
			"root_dir",
			[](py::object& obj) { return obj.cast<Testbed&>().root_dir().str(); },
			[](const py::object& obj, const std::string& value) { obj.cast<Testbed&>().set_root_dir(value); }
		);

	py::enum_<EGen3cCameraSource>(m, "Gen3cCameraSource")
		.value("Fake", EGen3cCameraSource::Fake)
		.value("Viewpoint", EGen3cCameraSource::Viewpoint)
		.value("Authored", EGen3cCameraSource::Authored);

	testbed
		.def(
			"set_gen3c_cb",
			[](Testbed& testbed, const Testbed::gen3c_cb_t& cb) {
				// testbed.m_gen3c_cb.reset(cb);
				testbed.m_gen3c_cb = cb;
			}
		)
		.def_readwrite("gen3c_info", &Testbed::m_gen3c_info)
		.def_readwrite("gen3c_seed_path", &Testbed::m_gen3c_seed_path)
		.def_readwrite("gen3c_auto_inference", &Testbed::m_gen3c_auto_inference)
		.def_readwrite("gen3c_camera_source", &Testbed::m_gen3c_camera_source)
		.def_readwrite("gen3c_translation_speed", &Testbed::m_gen3c_translation_speed)
		.def_readwrite("gen3c_rotation_speed", &Testbed::m_gen3c_rotation_speed)
		.def_readwrite("gen3c_inference_info", &Testbed::m_gen3c_inference_info)
		.def_readwrite("gen3c_seeding_progress", &Testbed::m_gen3c_seeding_progress)
		.def_readwrite("gen3c_inference_progress", &Testbed::m_gen3c_inference_progress)
		.def_readwrite("gen3c_inference_is_connected", &Testbed::m_gen3c_inference_is_connected)
		.def_readwrite("gen3c_render_with_gen3c", &Testbed::m_gen3c_render_with_gen3c)
		// Output
		.def_readwrite("gen3c_save_frames", &Testbed::m_gen3c_save_frames)
		.def_readwrite("gen3c_display_frames", &Testbed::m_gen3c_display_frames)
		.def_readwrite("gen3c_output_dir", &Testbed::m_gen3c_output_dir)
		.def_readwrite("gen3c_show_cache_renderings", &Testbed::m_gen3c_show_cache_renderings);

	py::class_<CameraKeyframe>(m, "CameraKeyframe")
		.def(py::init<>())
		.def(
			py::init<const quat&, const vec3&, float, float>(),
			py::arg("r"),
			py::arg("t"),
			py::arg("fov"),
			py::arg("timestamp")
		)
		.def(
			py::init<const mat4x3&, float, float>(),
			py::arg("m"),
			py::arg("fov"),
			py::arg("timestamp")
		)
		.def_readwrite("R", &CameraKeyframe::R)
		.def_readwrite("T", &CameraKeyframe::T)
		.def_readwrite("fov", &CameraKeyframe::fov)
		.def_readwrite("timestamp", &CameraKeyframe::timestamp)
		.def("m", &CameraKeyframe::m)
		.def("from_m", &CameraKeyframe::from_m, py::arg("rv"))
		.def("same_pos_as", &CameraKeyframe::same_pos_as, py::arg("rhs"));

	py::enum_<EEditingKernel>(m, "EditingKernel")
		.value("None", EEditingKernel::None)
		.value("Gaussian", EEditingKernel::Gaussian)
		.value("Quartic", EEditingKernel::Quartic)
		.value("Hat", EEditingKernel::Hat)
		.value("Box", EEditingKernel::Box);

	py::class_<CameraPath::RenderSettings>(m, "CameraPathRenderSettings")
		.def_readwrite("resolution", &CameraPath::RenderSettings::resolution)
		.def_readwrite("spp", &CameraPath::RenderSettings::spp)
		.def_readwrite("fps", &CameraPath::RenderSettings::fps)
		.def_readwrite("shutter_fraction", &CameraPath::RenderSettings::shutter_fraction)
		.def_readwrite("quality", &CameraPath::RenderSettings::quality);

	py::class_<CameraPath::Pos>(m, "CameraPathPos").def_readwrite("kfidx", &CameraPath::Pos::kfidx).def_readwrite("t", &CameraPath::Pos::t);

	py::class_<CameraPath>(m, "CameraPath")
		.def_readwrite("keyframes", &CameraPath::keyframes)
		.def_readwrite("update_cam_from_path", &CameraPath::update_cam_from_path)
		.def_readwrite("play_time", &CameraPath::play_time)
		.def_readwrite("auto_play_speed", &CameraPath::auto_play_speed)
		.def_readwrite("default_duration_seconds", &CameraPath::default_duration_seconds)
		.def_readwrite("loop", &CameraPath::loop)
		.def_readwrite("keyframe_subsampling", &CameraPath::keyframe_subsampling)
		.def_property("duration_seconds", &CameraPath::duration_seconds, &CameraPath::set_duration_seconds)
		.def_readwrite("editing_kernel_type", &CameraPath::editing_kernel_type)
		.def_readwrite("editing_kernel_radius", &CameraPath::editing_kernel_radius)
		.def_readwrite("spline_order", &CameraPath::spline_order)
		.def_readwrite("render_settings", &CameraPath::render_settings)
		.def_readwrite("rendering", &CameraPath::rendering)
		.def_readwrite("render_frame_idx", &CameraPath::render_frame_idx)
		.def_readwrite("render_start_time", &CameraPath::render_start_time)
		.def_readwrite("render_frame_end_camera", &CameraPath::render_frame_end_camera)
		.def("clear", &CameraPath::clear)
		.def("has_valid_timestamps", &CameraPath::has_valid_timestamps)
		.def("make_keyframe_timestamps_equidistant", &CameraPath::make_keyframe_timestamps_equidistant)
		.def("sanitize_keyframes", &CameraPath::sanitize_keyframes)
		.def("get_pos", &CameraPath::get_pos, py::arg("playtime"))
		.def("get_playtime", &CameraPath::get_playtime, py::arg("i"))
		.def("get_keyframe", &CameraPath::get_keyframe, py::arg("i"))
		.def("eval_camera_path", &CameraPath::eval_camera_path, py::arg("t"))
		.def("save", &CameraPath::save, py::arg("path"))
		.def("load", &CameraPath::load, py::arg("path"), py::arg("first_xform"))
		.def(
			"add_camera",
			&CameraPath::add_camera,
			py::arg("camera"),
			py::arg("fov"),
			py::arg("timestamp")
		);

	// Minimal logging framework (tlog)
	// https://github.com/Tom94/tinylogger/
	py::module_ tlog = m.def_submodule("tlog", "Tiny logging framework");
	tlog.def("none", [](const std::string &s) { tlog::none() << s; })
		.def("info", [](const std::string &s) { tlog::info() << s; })
		.def("debug", [](const std::string &s) { tlog::debug() << s; })
		.def("warning", [](const std::string &s) { tlog::warning() << s; })
		.def("error", [](const std::string &s) { tlog::error() << s; })
		.def("success", [](const std::string &s) { tlog::success() << s; });
}

} // namespace ngp