Spaces:
Build error
Build error
| # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import List, Tuple, Union | |
| import torch | |
| import transformers | |
| from transformers import T5EncoderModel, T5TokenizerFast | |
| from cosmos_predict1.utils import log | |
| transformers.logging.set_verbosity_error() | |
| class CosmosT5TextEncoder(torch.nn.Module): | |
| """Handles T5 text encoding operations.""" | |
| def __init__(self, model_name: str = "google-t5/t5-11b", device: str = "cuda", cache_dir: str = "~/.cache"): | |
| """Initializes the T5 tokenizer and encoder. | |
| Args: | |
| model_name: The name of the T5 model to use. | |
| device: The device to use for computations. | |
| """ | |
| super().__init__() | |
| try: | |
| self.tokenizer = T5TokenizerFast.from_pretrained(cache_dir, cache_dir=cache_dir) | |
| self.text_encoder = T5EncoderModel.from_pretrained(cache_dir, cache_dir=cache_dir).to(device) | |
| except Exception as e: | |
| log.warning(f"Failed to load T5 model using cache_dir '{cache_dir}', falling back to default location: {e}") | |
| self.tokenizer = T5TokenizerFast.from_pretrained(model_name) | |
| self.text_encoder = T5EncoderModel.from_pretrained(model_name).to(device) | |
| self.text_encoder.eval() | |
| self.device = device | |
| def encode_prompts( | |
| self, prompts: Union[str, List[str]], max_length: int = 512 | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Encodes text prompts into hidden state representations using a T5 encoder. | |
| This function tokenizes the input prompts, processes them through a T5 text encoder, | |
| and returns the last hidden states. The encoded outputs beyond the actual sequence | |
| length are zero-padded. All prompts in a batch are padded to max_length. | |
| Args: | |
| prompts: Input text to encode. Can be a single string or a list of strings. | |
| max_length: Maximum sequence length for tokenization and padding. Longer | |
| sequences will be truncated. Defaults to 512. | |
| return_mask: If True, returns the attention mask along with encoded text. | |
| Defaults to False. | |
| Returns: | |
| If return_mask is False: | |
| torch.Tensor: Encoded text embeddings of shape (batch_size, max_length, hidden_size). | |
| If return_mask is True: | |
| tuple[torch.Tensor, torch.Tensor]: A tuple containing: | |
| - Encoded text embeddings of shape (batch_size, max_length, hidden_size) | |
| - Attention mask of shape (batch_size, max_length) as boolean tensor | |
| Raises: | |
| ValueError: If the input prompts list is empty. | |
| Example: | |
| >>> encoder = CosmosT5TextEncoder() | |
| >>> prompts = ["Hello world", "Another example"] | |
| >>> embeddings = encoder.encode_prompts(prompts, max_length=128) | |
| """ | |
| if isinstance(prompts, str): | |
| prompts = [prompts] | |
| if not prompts: | |
| raise ValueError("The input prompt list is empty.") | |
| batch_encoding = self.tokenizer.batch_encode_plus( | |
| prompts, | |
| return_tensors="pt", | |
| truncation=True, | |
| padding="max_length", | |
| max_length=max_length, | |
| return_length=True, | |
| return_offsets_mapping=False, | |
| ) | |
| input_ids = batch_encoding.input_ids.to(self.device) | |
| attn_mask = batch_encoding.attention_mask.to(self.device) | |
| outputs = self.text_encoder(input_ids=input_ids, attention_mask=attn_mask) | |
| encoded_text = outputs.last_hidden_state | |
| lengths = attn_mask.sum(dim=1).cpu() | |
| for batch_id in range(encoded_text.shape[0]): | |
| encoded_text[batch_id][lengths[batch_id] :] = 0 | |
| return encoded_text, attn_mask | |
| class DummyT5TextEncoder(torch.nn.Module): | |
| def __init__(self, device: str = "cuda"): | |
| super().__init__() | |
| self.device = device | |
| def encode_prompts( | |
| self, prompts: Union[str, List[str]], max_length: int = 512 | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| if isinstance(prompts, str): | |
| prompts = [prompts] | |
| if not prompts: | |
| raise ValueError("The input prompt list is empty.") | |
| batch_size = len(prompts) | |
| dummy_text_embedding = torch.zeros(batch_size, max_length, 1024, device=self.device) | |
| dummy_text_mask = torch.zeros(batch_size, max_length, device=self.device, dtype=torch.bool) | |
| dummy_text_mask[0] = True | |
| return dummy_text_embedding, dummy_text_mask | |