Spaces:
Build error
Build error
| # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import argparse | |
| import os | |
| import imageio | |
| import torch | |
| from cosmos_predict1.autoregressive.inference.world_generation_pipeline import ARVideo2WorldGenerationPipeline | |
| from cosmos_predict1.autoregressive.utils.inference import add_common_arguments, load_vision_input, validate_args | |
| from cosmos_predict1.utils import log | |
| from cosmos_predict1.utils.io import read_prompts_from_file | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Prompted video to world generation demo script") | |
| add_common_arguments(parser) | |
| parser.add_argument( | |
| "--ar_model_dir", | |
| type=str, | |
| default="Cosmos-Predict1-5B-Video2World", | |
| ) | |
| parser.add_argument( | |
| "--input_type", | |
| type=str, | |
| default="text_and_video", | |
| choices=["text_and_image", "text_and_video"], | |
| help="Input types", | |
| ) | |
| parser.add_argument( | |
| "--prompt", | |
| type=str, | |
| help="Text prompt for generating a single video", | |
| ) | |
| parser.add_argument( | |
| "--offload_text_encoder_model", | |
| action="store_true", | |
| help="Offload T5 model after inference", | |
| ) | |
| args = parser.parse_args() | |
| return args | |
| def main(args): | |
| """Run prompted video-to-world generation demo. | |
| This function handles the main video-to-world generation pipeline, including: | |
| - Setting up the random seed for reproducibility | |
| - Initializing the generation pipeline with the provided configuration | |
| - Processing single or multiple prompts/images/videos from input | |
| - Generating videos from prompts and images/videos | |
| - Saving the generated videos and corresponding prompts to disk | |
| Args: | |
| cfg (argparse.Namespace): Configuration namespace containing: | |
| - Model configuration (checkpoint paths, model settings) | |
| - Generation parameters (temperature, top_p) | |
| - Input/output settings (images/videos, save paths) | |
| - Performance options (model offloading settings) | |
| The function will save: | |
| - Generated MP4 video files | |
| If guardrails block the generation, a critical log message is displayed | |
| and the function continues to the next prompt if available. | |
| """ | |
| inference_type = "video2world" # When the inference_type is "video2world", AR model takes both text and video as input, the world generation is based on the input text prompt and video | |
| sampling_config = validate_args(args, inference_type) | |
| if args.num_gpus > 1: | |
| from megatron.core import parallel_state | |
| from cosmos_predict1.utils import distributed | |
| distributed.init() | |
| # Initialize prompted base generation model pipeline | |
| pipeline = ARVideo2WorldGenerationPipeline( | |
| inference_type=inference_type, | |
| checkpoint_dir=args.checkpoint_dir, | |
| checkpoint_name=args.ar_model_dir, | |
| disable_diffusion_decoder=args.disable_diffusion_decoder, | |
| offload_guardrail_models=args.offload_guardrail_models, | |
| offload_diffusion_decoder=args.offload_diffusion_decoder, | |
| offload_network=args.offload_ar_model, | |
| offload_tokenizer=args.offload_tokenizer, | |
| offload_text_encoder_model=args.offload_text_encoder_model, | |
| disable_guardrail=args.disable_guardrail, | |
| parallel_size=args.num_gpus, | |
| ) | |
| # Load input image(s) or video(s) | |
| input_videos = load_vision_input( | |
| input_type=args.input_type, | |
| batch_input_path=args.batch_input_path, | |
| input_image_or_video_path=args.input_image_or_video_path, | |
| data_resolution=args.data_resolution, | |
| num_input_frames=args.num_input_frames, | |
| ) | |
| # Load input prompt(s) | |
| if args.batch_input_path: | |
| prompts_list = read_prompts_from_file(args.batch_input_path) | |
| else: | |
| prompts_list = [{"visual_input": args.input_image_or_video_path, "prompt": args.prompt}] | |
| # Iterate through prompts | |
| for idx, prompt_entry in enumerate(prompts_list): | |
| video_path = prompt_entry["visual_input"] | |
| input_filename = os.path.basename(video_path) | |
| # Check if video exists in loaded videos | |
| if input_filename not in input_videos: | |
| log.critical(f"Input file {input_filename} not found, skipping prompt.") | |
| continue | |
| inp_vid = input_videos[input_filename] | |
| inp_prompt = prompt_entry["prompt"] | |
| # Generate video | |
| log.info(f"Run with input: {prompt_entry}") | |
| out_vid = pipeline.generate( | |
| inp_prompt=inp_prompt, | |
| inp_vid=inp_vid, | |
| num_input_frames=args.num_input_frames, | |
| seed=args.seed, | |
| sampling_config=sampling_config, | |
| ) | |
| if out_vid is None: | |
| log.critical("Guardrail blocked video2world generation.") | |
| continue | |
| # Save video | |
| if args.input_image_or_video_path: | |
| out_vid_path = os.path.join(args.video_save_folder, f"{args.video_save_name}.mp4") | |
| else: | |
| out_vid_path = os.path.join(args.video_save_folder, f"{idx}.mp4") | |
| imageio.mimsave(out_vid_path, out_vid, fps=25) | |
| log.info(f"Saved video to {out_vid_path}") | |
| # clean up properly | |
| if args.num_gpus > 1: | |
| parallel_state.destroy_model_parallel() | |
| import torch.distributed as dist | |
| dist.destroy_process_group() | |
| if __name__ == "__main__": | |
| torch._C._jit_set_texpr_fuser_enabled(False) | |
| args = parse_args() | |
| main(args) | |