Spaces:
Build error
Build error
| # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from hydra.core.config_store import ConfigStore | |
| from cosmos_predict1.diffusion.training.utils.peft.lora_config import get_fa_ca_qv_lora_config | |
| from cosmos_predict1.utils.lazy_config import LazyDict | |
| Cosmos_Predict1_Text2World_7B: LazyDict = LazyDict( | |
| dict( | |
| defaults=[ | |
| {"override /net": "faditv2_7b"}, | |
| {"override /conditioner": "add_fps_image_size_padding_mask"}, | |
| {"override /tokenizer": "cosmos_diffusion_tokenizer_res720_comp8x8x8_t121_ver092624"}, | |
| "_self_", | |
| ], | |
| job=dict( | |
| group="Text2World", | |
| name="Cosmos_Predict1_Text2World_7B", | |
| ), | |
| model=dict( | |
| latent_shape=[ | |
| 16, | |
| 16, | |
| 88, | |
| 160, | |
| ], | |
| net=dict( | |
| rope_h_extrapolation_ratio=1.0, | |
| rope_w_extrapolation_ratio=1.0, | |
| rope_t_extrapolation_ratio=2.0, | |
| ), | |
| ), | |
| ) | |
| ) | |
| Cosmos_Predict1_Text2World_14B: LazyDict = LazyDict( | |
| dict( | |
| defaults=[ | |
| {"override /net": "faditv2_14b"}, | |
| {"override /conditioner": "add_fps_image_size_padding_mask"}, | |
| {"override /tokenizer": "cosmos_diffusion_tokenizer_res720_comp8x8x8_t121_ver092624"}, | |
| "_self_", | |
| ], | |
| job=dict( | |
| group="Text2World", | |
| name="Cosmos_Predict1_Text2World_14B", | |
| ), | |
| model=dict( | |
| latent_shape=[ | |
| 16, | |
| 16, | |
| 88, | |
| 160, | |
| ], | |
| net=dict( | |
| rope_h_extrapolation_ratio=2.0, | |
| rope_t_extrapolation_ratio=2.0, | |
| rope_w_extrapolation_ratio=2.0, | |
| extra_h_extrapolation_ratio=2.0, | |
| extra_t_extrapolation_ratio=2.0, | |
| extra_w_extrapolation_ratio=2.0, | |
| ), | |
| ), | |
| ) | |
| ) | |
| Cosmos_Predict1_Text2World_7B_Post_trained: LazyDict = LazyDict( | |
| dict( | |
| defaults=[ | |
| "/experiment/Cosmos_Predict1_Text2World_7B", | |
| ], | |
| job=dict( | |
| name="Cosmos_Predict1_Text2World_7B_Post_trained", | |
| ), | |
| ) | |
| ) | |
| Cosmos_Predict1_Text2World_14B_Post_trained: LazyDict = LazyDict( | |
| dict( | |
| defaults=[ | |
| "/experiment/Cosmos_Predict1_Text2World_14B", | |
| ], | |
| job=dict( | |
| name="Cosmos_Predict1_Text2World_14B_Post_trained", | |
| ), | |
| ) | |
| ) | |
| Cosmos_Predict1_Text2World_7B_Post_trained_4gpu_80gb: LazyDict = LazyDict( | |
| dict( | |
| defaults=[ | |
| "/experiment/Cosmos_Predict1_Text2World_7B", | |
| ], | |
| job=dict( | |
| name="Cosmos_Predict1_Text2World_7B_Post_trained_4gpu_80gb", | |
| ), | |
| model=dict( | |
| latent_shape=[ # 384x384 resolution | |
| 16, # Latent channel dim | |
| 16, # Latent temporal dim | |
| 48, # Latent height dim | |
| 48, # Latent width dim | |
| ], | |
| tokenizer=dict( | |
| video_vae=dict(pixel_chunk_duration=121, spatial_resolution="384"), | |
| ), | |
| ), | |
| ) | |
| ) | |
| Cosmos_Predict1_Text2World_7B_Post_trained_8gpu_40gb: LazyDict = LazyDict( | |
| dict( | |
| defaults=[ | |
| "/experiment/Cosmos_Predict1_Text2World_7B", | |
| ], | |
| job=dict( | |
| name="Cosmos_Predict1_Text2World_7B_Post_trained_8gpu_40gb", | |
| ), | |
| model=dict( | |
| latent_shape=[ # 384x384 resolution | |
| 16, # Latent channel dim | |
| 16, # Latent temporal dim | |
| 48, # Latent height dim | |
| 48, # Latent width dim | |
| ], | |
| tokenizer=dict( | |
| video_vae=dict(pixel_chunk_duration=33, spatial_resolution="384"), | |
| ), | |
| ), | |
| ) | |
| ) | |
| Cosmos_Predict1_Text2World_7B_Post_trained_4gpu_40gb: LazyDict = LazyDict( | |
| dict( | |
| defaults=[ | |
| "/experiment/Cosmos_Predict1_Text2World_7B", | |
| ], | |
| job=dict( | |
| name="Cosmos_Predict1_Text2World_7B_Post_trained_4gpu_40gb", | |
| ), | |
| model=dict( | |
| latent_shape=[ # 384x384 resolution | |
| 16, # Latent channel dim | |
| 16, # Latent temporal dim | |
| 48, # Latent height dim | |
| 48, # Latent width dim | |
| ], | |
| tokenizer=dict( | |
| video_vae=dict(pixel_chunk_duration=17, spatial_resolution="384"), | |
| ), | |
| ), | |
| ) | |
| ) | |
| Cosmos_Predict1_Text2World_7B_Post_trained_lora: LazyDict = LazyDict( | |
| dict( | |
| defaults=[ | |
| "/experiment/Cosmos_Predict1_Text2World_7B_Post_trained", | |
| ], | |
| job=dict( | |
| name="Cosmos_Predict1_Text2World_7B_Post_trained_lora", | |
| ), | |
| model=dict( | |
| peft_control=get_fa_ca_qv_lora_config(first_nblocks=27, rank=8, scale=1), | |
| ), | |
| ) | |
| ) | |
| cs = ConfigStore.instance() | |
| for _item in [ | |
| Cosmos_Predict1_Text2World_7B, | |
| Cosmos_Predict1_Text2World_14B, | |
| Cosmos_Predict1_Text2World_7B_Post_trained, | |
| Cosmos_Predict1_Text2World_14B_Post_trained, | |
| Cosmos_Predict1_Text2World_7B_Post_trained_4gpu_80gb, | |
| Cosmos_Predict1_Text2World_7B_Post_trained_8gpu_40gb, | |
| Cosmos_Predict1_Text2World_7B_Post_trained_4gpu_40gb, | |
| Cosmos_Predict1_Text2World_7B_Post_trained_lora, | |
| ]: | |
| cs.store(group="experiment", package="_global_", name=_item["job"]["name"], node=_item) | |