gen3c / Dockerfile
elungky's picture
Attempt to fix libcudnn.so.9 error by installing cudnn via conda and transformer_engine separately
cf41009
raw
history blame
3.23 kB
# Start from a clean NVIDIA CUDA base image.
FROM nvidia/cuda:12.4.0-devel-ubuntu22.04
# Set environment variables for non-interactive installations to prevent prompts during apt-get.
ENV DEBIAN_FRONTEND=noninteractive
ENV CONDA_DIR=/opt/conda
ENV PATH=$CONDA_DIR/bin:$PATH
WORKDIR /app
# Install essential system dependencies required for Miniconda and general build tools.
RUN apt-get update && apt-get install -y --no-install-recommends \
wget \
git \
build-essential \
libgl1-mesa-glx \
libglib2.0-0 \
# Add any other system libraries that might be needed by transformer_engine or other deep learning libs
# For example, libstdc++6, libgomp1, etc., though usually covered by base image or build-essential
&& rm -rf /var/lib/apt/lists/*
# Install Miniconda
RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh && \
/bin/bash miniconda.sh -b -p $CONDA_DIR && \
rm miniconda.sh && \
conda clean --all --yes && \
conda config --set auto_activate_base false && \
conda config --add channels conda-forge
# Accept Conda Terms of Service for default channels.
RUN . $CONDA_DIR/etc/profile.d/conda.sh && \
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/main && \
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/r
# Copy all local project files into the container's working directory (/app).
COPY . /app
# Create the Conda environment named 'cosmos-predict1' using the provided YAML file.
RUN conda env create -f cosmos-predict1.yaml
# Set the default Conda environment to be activated.
ENV CONDA_DEFAULT_ENV=cosmos-predict1
ENV PATH=$CONDA_DIR/envs/cosmos-predict1/bin:$PATH
# Install PyTorch and TorchVision via pip with specific CUDA index.
RUN . $CONDA_DIR/etc/profile.d/conda.sh && \
conda activate cosmos-predict1 && \
pip install --no-cache-dir \
torch==2.3.1 \
torchvision==0.18.1 \
torchaudio==2.3.1 \
--index-url https://download.pytorch.org/whl/cu121
# --- NEW: Install Transformer Engine separately after PyTorch and cuDNN are in place ---
# This ensures it can find the necessary CUDA/cuDNN libraries.
# Also add git to apt-get install above if not already there.
RUN . $CONDA_DIR/etc/profile.d/conda.sh && \
conda activate cosmos-predict1 && \
pip install --no-cache-dir transformer-engine[pytorch]==1.12.0
# --- END NEW ---
# --- Verification Steps ---
RUN echo "Verifying Python and Conda installations..."
RUN python --version
RUN conda env list
RUN echo "Verifying PyTorch and CUDA availability..."
RUN conda run -n cosmos-predict1 python <<EOF
import torch
print('PyTorch Version: ' + torch.__version__)
print('CUDA Available: ' + str(torch.cuda.is_available()))
if torch.cuda.is_available():
print('CUDA Device Name: ' + torch.cuda.get_device_name(0))
else:
print('CUDA Device Name: N/A')
EOF
RUN [ $? -eq 0 ] || echo "PyTorch verification failed. Check dependencies in cosmos-predict1.yaml."
# --- End Verification Steps ---
# Make the start.sh script executable.
RUN chmod +x /app/start.sh
# Set the default command to run when the container starts.
CMD ["/app/start.sh"]