Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Config settings for cosmos/tokenizer (basic image and video setting)""" | |
from hydra.core.config_store import ConfigStore | |
from cosmos_predict1.utils.lazy_config import LazyDict | |
CAUSAL_VIDEO_BASIC: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
{"override /network": "continuous_factorized_video"}, | |
{"override /data_train": "mock_video720"}, | |
{"override /data_val": "mock_video720"}, | |
{"override /loss": "video"}, | |
{"override /optimizer": "fused_adam"}, | |
{"override /callbacks": ["basic"]}, | |
"_self_", | |
], | |
model=dict( | |
config=dict( | |
loss=dict( | |
config=dict( | |
perceptual=dict( | |
config=dict( | |
lpips_boundaries=[0], | |
lpips_values=[0.1], | |
gram_enabled=False, | |
gram_boundaries=[0], | |
) | |
), | |
video_consistency=dict( | |
config=dict( | |
enabled=False, | |
boundaries=[0], | |
values=[1.0], | |
num_frames=32, | |
step=8, | |
) | |
), | |
flow=dict( | |
config=dict( | |
enabled=False, | |
boundaries=[1_000_000], | |
values=[0.0, 0.01], | |
scale=2, | |
dtype="bfloat16", | |
checkpoint_activations=False, | |
) | |
), | |
) | |
) | |
) | |
), | |
dataloader_train=dict( | |
dataset=dict( | |
crop_height=256, | |
num_video_frames=49, | |
), | |
batch_size=1, | |
), | |
dataloader_val=dict( | |
dataset=dict( | |
crop_height=720, | |
num_video_frames=49, | |
), | |
batch_size=1, | |
), | |
job=dict( | |
project="posttraining", | |
group="tokenizer", | |
name="basic_${now:%Y-%m-%d}_${now:%H-%M-%S}", | |
), | |
checkpoint=dict(load_path=None, jit=dict(input_shape=[1, 3, 17, 512, 512])), | |
) | |
) | |
cs = ConfigStore.instance() | |
cs.store(group="experiment", package="_global_", name="video_basic", node=CAUSAL_VIDEO_BASIC) | |