gen3c / gui /api /client.py
elungky's picture
Initial commit for new Space - pre-built Docker image
28451f7
#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import asyncio
import code
from copy import deepcopy
from datetime import datetime
import glob
import os
from os.path import realpath, dirname, join
import pickle
import subprocess
import sys
import time
import cv2
import httpx
import numpy as np
import pyexr
import tqdm
ROOT_DIR = realpath(dirname(dirname(__file__)))
DATA_DIR = join(ROOT_DIR, "data")
sys.path.append(join(ROOT_DIR, "scripts"))
# Search for pyngp in the build folder.
sys.path += [os.path.dirname(pyd) for pyd in glob.iglob(os.path.join(ROOT_DIR, "build*", "**/*.pyd"), recursive=True)]
sys.path += [os.path.dirname(pyd) for pyd in glob.iglob(os.path.join(ROOT_DIR, "build*", "**/*.so"), recursive=True)]
import pyngp as ngp
from pyngp import tlog
from api_types import SeedingRequest, CompressedSeedingRequest, SeedingResult, \
InferenceRequest, InferenceResult, CompressedInferenceResult, \
RequestState, PendingRequest
from httpx_utils import httpx_request
from v2v_utils import load_v2v_seeding_data, ensure_alpha_channel, srgb_to_linear
def repl(testbed):
print("-------------------\npress Ctrl-Z to return to gui\n---------------------------")
code.InteractiveConsole(locals=locals()).interact()
print("------- returning to gui...")
def open_file_with_default_app(video_path: str) -> None:
"""Open the saved video file with the default video player application."""
try:
if sys.platform == "win32":
# Windows
os.startfile(video_path)
else:
# Avoid venv, etc interfering with the application that will open.
env = os.environ.copy()
for k in ("QT_QPA_PLATFORM_PLUGIN_PATH", "QT_QPA_FONTDIR", "LD_LIBRARY_PATH"):
if k in env:
del env[k]
if sys.platform == "darwin":
# macOS
subprocess.run(["open", video_path], check=True, env=env)
else:
# Linux, etc.
subprocess.run(["xdg-open", video_path], check=True, env=env)
except Exception as e:
tlog.error(f"Failed to open video file: {e}")
class Gen3cClient():
def __init__(
self,
files: list[str],
host: str,
port: int,
width: int = 1920,
height: int = 1080,
vr: bool = False,
request_latency_ms: int = 100,
inference_resolution: tuple[int, int] = (1920, 1080),
# max_pending_requests: int = 2,
max_pending_requests: int = 1,
request_timeous_seconds: float = 1000,
seed_max_frames: int | None = None,
seed_stride: int = 1,
output_dir: str | None = None,
):
self.url = f"http://{host}:{port}"
self.client_id = f"gen3c{os.getpid()}"
self.request_latency_ms = request_latency_ms
self.inference_resolution = inference_resolution
self.max_pending_requests = max_pending_requests
self.req_timeout_s = request_timeous_seconds
self.seed_max_frames = seed_max_frames
self.seed_stride = seed_stride
testbed = ngp.Testbed(ngp.TestbedMode.Gen3c)
testbed.root_dir = ROOT_DIR
testbed.set_gen3c_cb(self.gui_callback)
testbed.file_drop_callback = self.file_drop_callback
if output_dir is not None:
os.makedirs(output_dir, exist_ok=True)
else:
output_dir = join(ROOT_DIR, "outputs")
testbed.gen3c_output_dir = output_dir
testbed.video_path = join(output_dir, "gen3c_%Y-%m-%d_%H-%M-%S.mp4")
# --- Check metadata from server to ensure compatibility
testbed.reproject_visualize_src_views = False
testbed.render_aabb.min = np.array([-16.0, -16.0, -16.0])
testbed.render_aabb.max = np.array([16.0, 16.0, 16.0])
try:
tlog.info(f"Requesting metadata from server {host}:{port}")
metadata = self.request_metadata_sync()
testbed.render_aabb.min = np.array(metadata["aabb_min"]).astype(np.float32)
testbed.render_aabb.max = np.array(metadata["aabb_max"]).astype(np.float32)
testbed.aabb = ngp.BoundingBox(testbed.render_aabb.min, testbed.render_aabb.max)
testbed.gen3c_info = f"Connected to server {host}:{port}, model name: {metadata.get('model_name')}"
model_inference_res: list[tuple[int, int]] | None = metadata.get("inference_resolution")
if model_inference_res is not None:
for supported_res in model_inference_res:
if tuple(supported_res) == self.inference_resolution:
break
else:
r = tuple(model_inference_res[0])
tlog.warning(f"Client inference resolution {self.inference_resolution} is not"
f" supported by the inference server, adopting resolution {r} instead.")
self.inference_resolution = r
testbed.camera_path.render_settings.resolution = self.inference_resolution
testbed.gen3c_inference_is_connected = True
testbed.gen3c_render_with_gen3c = True
except httpx.ConnectError as e:
# The metadata-based setup happens only once at startup. Since we failed to
# get the metadata from the server, it's easier to just raise and exit here.
raise RuntimeError(
f"Connection error! Make sure the server was started at: {host}:{port}\n{e}"
) from e
testbed.camera_path.render_settings.fps = metadata.get("default_framerate") or 24.0
self.min_frames_per_request: int = metadata.get("min_frames_per_request", 1)
self.max_frames_per_request: int = metadata.get("max_frames_per_request", 1)
if self.min_frames_per_request > 1:
# Set default render settings such that the model can generate it
# in a single batch exactly.
testbed.camera_path.default_duration_seconds = \
self.min_frames_per_request / testbed.camera_path.render_settings.fps
testbed.camera_path.duration_seconds = testbed.camera_path.default_duration_seconds
# Expected time that the model will take to generate each frame, in seconds
self.inference_time_per_frame: float = metadata.get("inference_time_per_frame", 0.0)
# Don't automatically request new frames all the time if inference is slow
testbed.gen3c_auto_inference &= (self.inference_time_per_frame < 1.0)
self.seeding_pending: bool = False
self.model_requires_seeding: bool = metadata.get("requires_seeding", True)
if self.model_requires_seeding:
testbed.gen3c_info += "\nThis model requires seeding data."
# Pick a sensible GUI resolution depending on arguments.
sw = width
sh = height
while sw * sh > 1920 * 1080 * 4:
sw = int(sw / 2)
sh = int(sh / 2)
testbed.init_window(sw, sh)
if vr:
testbed.init_vr()
self.testbed: ngp.Testbed = testbed
self.lens = ngp.Lens()
self.lens.mode = ngp.LensMode.Perspective
self.client = httpx.AsyncClient()
self.last_request_id: int = 0
self.start_t: float = None
self.last_request_t: float = None
self.pending_requests: dict[str, PendingRequest] = {}
# Handle files given as command-line arguments.
if files:
self.file_drop_callback(files)
async def run(self):
testbed = self.testbed
self.start_t = time.monotonic()
self.last_request_t = time.monotonic()
# TODO: any way to make the rendering itself async? (pybind11 support?)
while testbed.frame():
# --- At each frame
if testbed.want_repl():
repl(testbed)
if self.model_requires_seeding and self.seeding_pending and self.testbed.gen3c_seed_path:
tlog.info(f"Loading seeding data with path: {self.testbed.gen3c_seed_path}")
# Load the seeding data.
seed_req = self.load_seeding_data(self.testbed.gen3c_seed_path)
if seed_req is not None:
self.adapt_view_to_cameras(seed_req.cameras_to_world)
# Send the seeding request over to the server (could be a slow upload).
self.send_seeding_request(seed_req)
self.seeding_pending = False
# Give coroutines a chance to run (especially if there are pending HTTP requests).
# This is essentially a "yield".
# TODO: how can we sleep only for the minimum needed time?
# Probably we would need to request the `testbed`'s frame in an
# async way as well? Something like:
# await testbed.frame()
await asyncio.sleep(0.003 if self._transfer_in_progress() else 0.0001)
# Check pending inference requests
self.get_request_results()
# New inference request
# TODO: if there are too many pending requests, cancel the oldest one
# instead of continuing to wait.
now = time.monotonic()
if ((1000 * (now - self.last_request_t) > self.request_latency_ms)
and testbed.gen3c_auto_inference
and testbed.is_rendering
and len(self.pending_requests) < self.max_pending_requests):
self.request_frames()
def get_request_results(self):
to_remove = set()
for req_id, state in self.pending_requests.items():
if state.state in (RequestState.FAILED, RequestState.COMPLETE):
# Cleanup requests that are done one way or another
to_remove.add(req_id)
elif state.state == RequestState.REQUEST_PENDING:
# Before checking the results, we wait for the inference request to have
# been received by the server at least.
self.testbed.gen3c_inference_info = f"Waiting for inference request {req_id} to be received by the server..."
continue
elif state.state == RequestState.REQUEST_SENT:
# Server has received the inference request, we should now start checking results
def on_result_received(result: InferenceResult | None,
response: httpx.Response, failed: bool = False):
if failed:
tlog.error(f"Results request for inference {req_id} failed!\n"
f"{response.content}")
self.testbed.gen3c_inference_info = f"Error: {response.content}"
state.state = RequestState.FAILED
state.task = None
return
if result is None:
# Result not ready yet, check again soon
state.state = RequestState.REQUEST_SENT
state.task = None
return
# Actual result received!
assert isinstance(result, InferenceResult)
state.state = RequestState.COMPLETE
self.testbed.gen3c_inference_info = ""
tlog.success(f"Received results {req_id}: took {result.runtime_ms:.1f} ms to generate.")
need_frames = self.testbed.gen3c_display_frames or self.testbed.gen3c_save_frames
result.trim_to_original_frame_count()
if isinstance(result, CompressedInferenceResult):
# Save the compressed video straight to disk
video_path = datetime.now().strftime(self.testbed.video_path)
result.save_images(video_path)
tlog.success(f"[+] Wrote generated video to: {video_path}")
tlog.info(f"Opening file with default application: {video_path}")
open_file_with_default_app(video_path)
if need_frames:
result.decompress()
# Add all received frames to the viewer.
if self.testbed.gen3c_save_frames:
os.makedirs(self.testbed.gen3c_output_dir, exist_ok=True)
view_ids = set(self.testbed.src_view_ids())
for res_i in range(len(result)):
if not need_frames:
continue
# Only display the result if we don't already have it shown
res_id = result.result_ids[res_i]
if (res_id is not None) and (res_id in view_ids):
tlog.debug(f"Skipping result since id {res_id} is already displayed")
continue
# Allow alpha channel to be omitted for faster transfers
image = ensure_alpha_channel(result.images[res_i, ...])
if self.testbed.gen3c_save_frames:
safe_res_id = (res_id or f"{res_i:04d}").replace(":", "_")
fname = join(self.testbed.gen3c_output_dir,
f"rgb_{safe_res_id}.exr")
pyexr.write(fname, image)
fname = join(self.testbed.gen3c_output_dir,
f"depth_{safe_res_id}.exr")
pyexr.write(fname, result.depths[res_i, ...].astype(np.float32))
tlog.success(f"[+] Wrote inference result to: {fname}")
if self.testbed.gen3c_display_frames:
has_valid_depth = np.any(np.isfinite(result.depths[res_i, ...]))
if has_valid_depth:
self.testbed.add_src_view(
result.cameras_to_world[res_i, ...],
result.focal_lengths[res_i][0],
result.focal_lengths[res_i][1],
result.principal_points[res_i][0],
result.principal_points[res_i][1],
self.lens,
image,
result.depths[res_i, ...],
result.timestamps[res_i],
is_srgb=True,
)
self.testbed.reset_accumulation(reset_pip=True)
tlog.info(f"Added {res_id}[{res_i}] to viewer")
else:
tlog.debug(f"Not adding {res_id}[{res_i}] to viewer because it has no valid depth."
" Only keyframes (last frame of each batch) typically have valid depth.")
# Don't display more than 8 views at once by default to avoid
# slowing down the rendering too much.
self.set_max_number_of_displayed_views(8)
tlog.debug(f"Checking results of request {req_id}...")
state.state = RequestState.RESULT_PENDING
state.task = self._get_inference_results(req_id, on_result_received)
elif state.state == RequestState.RESULT_PENDING:
# We already sent a request to check on the results, let's wait until
# a response comes back (through the `on_result_received` cb).
if self.testbed.gen3c_inference_progress < 0:
# Only show the spinner if downloading the results hasn't started yet.
spinner = "|/-\\"[int(4 * time.time()) % 4]
self.testbed.gen3c_inference_info = f"[{spinner}] Waiting for server to complete inference..."
pass
for k in to_remove:
del self.pending_requests[k]
self.testbed.camera_path.rendering = len(self.pending_requests) > 0
# ----------
def request_metadata_sync(self) -> InferenceResult:
# Synchronous request (no need to `await`)
return httpx_request("get", self.url + "/metadata", timeout=self.req_timeout_s).json()
def request_frames(self, sync: bool = False) -> asyncio.Task | InferenceResult:
# The user wants a certain number of frames, but the model can only generate
# `self.min_frames_per_request` per request. Pad to get there.
n_desired_frames = int(np.ceil(self.testbed.camera_path.duration_seconds
* self.testbed.camera_path.render_settings.fps))
n_frames_padded = max(
int(np.ceil(n_desired_frames / self.min_frames_per_request) * self.min_frames_per_request),
self.min_frames_per_request
)
self.testbed.gen3c_inference_info = (
f"Requesting {n_desired_frames} frames ({n_frames_padded} total with padding, "
f"model has min batch size {self.min_frames_per_request})."
)
tlog.info(self.testbed.gen3c_inference_info)
# TODO: enforce `max_frames_per_request` from the server, too (with a clear error message)
now = time.monotonic()
cameras_to_world = np.repeat(self.testbed.camera_matrix[None, ...],
repeats=n_desired_frames, axis=0)
# By default, use the preview camera focal length.
# We assume square pixels, so horizontal and vertical focal lengths are equal.
default_focal_length = self.testbed.relative_focal_length * self.inference_resolution[self.testbed.fov_axis]
focal_lengths = np.array([default_focal_length] * n_desired_frames)
match self.testbed.gen3c_camera_source:
case ngp.Gen3cCameraSource.Fake:
# --- Camera movement: fake based on fixed translation and rotation speeds
counter = np.arange(n_desired_frames)[..., None]
if np.any(self.testbed.gen3c_rotation_speed != 0):
angles = counter * self.testbed.gen3c_rotation_speed[None, ...]
alphas = angles[:, 0]
betas = angles[:, 1]
gammas = angles[:, 2]
# TODO: nicer way to build the rotation matrix
fake_rotation = np.tile(np.eye(3, 3)[None, ...], (n_desired_frames, 1, 1))
fake_rotation[:, 0, 0] = np.cos(betas) * np.cos(gammas)
fake_rotation[:, 0, 1] = (
np.sin(alphas) * np.sin(betas) * np.cos(gammas)
- np.cos(alphas) * np.sin(gammas)
)
fake_rotation[:, 0, 2] = (
np.cos(alphas) * np.sin(betas) * np.cos(gammas)
+ np.sin(alphas) * np.sin(gammas)
)
fake_rotation[:, 1, 0] = np.cos(betas) * np.sin(gammas)
fake_rotation[:, 1, 1] = (
np.sin(alphas) * np.sin(betas) * np.sin(gammas)
+ np.cos(alphas) * np.cos(gammas)
)
fake_rotation[:, 1, 2] = (
np.cos(alphas) * np.sin(betas) * np.sin(gammas)
- np.sin(alphas) * np.cos(gammas)
)
fake_rotation[:, 2, 0] = -np.sin(betas)
fake_rotation[:, 2, 1] = np.sin(alphas) * np.cos(betas)
fake_rotation[:, 2, 2] = np.cos(alphas) * np.cos(betas)
cameras_to_world[:, :3, :3] @= fake_rotation
if np.any(self.testbed.gen3c_translation_speed != 0):
fake_translation = counter * self.testbed.gen3c_translation_speed[None, ...]
cameras_to_world[:, :, 3] += fake_translation
case ngp.Gen3cCameraSource.Viewpoint:
# --- Camera movement: based on the current viewpoint + predicted movement
tlog.error("Not implemented: Gen3C camera movement source: Viewpoint")
return
case ngp.Gen3cCameraSource.Authored:
# --- Camera movement: based on the current authored camera path
keyframes = [
self.testbed.camera_path.eval_camera_path(t)
for t in np.linspace(0, 1, n_desired_frames, endpoint=True)
]
cameras_to_world = [
keyframe.m()[None, ...]
for keyframe in keyframes
]
cameras_to_world = np.concatenate(cameras_to_world, axis=0)
focal_lengths = np.stack([
[
ngp.fov_to_focal_length(self.inference_resolution[self.testbed.fov_axis], keyframe.fov)
] * 2
for keyframe in keyframes
], axis=0)
case _:
raise ValueError("Unsupported Gen3C camera movement source:",
self.testbed.gen3c_camera_source)
t0 = now - self.start_t
timestamps = [t0 + i * self.inference_time_per_frame
for i in range(n_desired_frames)]
request_id = f"{self.client_id}:{self.last_request_id + 1}"
tlog.debug(f"Creating new request {request_id}")
req = InferenceRequest(
request_id=request_id,
timestamps=np.array(timestamps),
cameras_to_world=cameras_to_world,
focal_lengths=focal_lengths,
principal_points=np.array([self.testbed.screen_center] * n_desired_frames),
resolutions=np.array([self.inference_resolution] * n_desired_frames),
framerate=self.testbed.camera_path.render_settings.fps,
# If we don't need to display the generated frames, we can save time
# by not estimating & downloading depth maps.
return_depths=self.testbed.gen3c_display_frames,
video_encoding_quality=self.testbed.camera_path.render_settings.quality,
show_cache_renderings=self.testbed.gen3c_show_cache_renderings,
)
# Add any necessary padding to the request to match the server's batch size.
req.pad_to_frame_count(n_frames_padded)
# Send an inference request to the server and add it to the
# list of pending requests.
self.request_frame(req, sync=sync)
tlog.info("Waiting for inference results (this may take a while)...")
self.last_request_t = now
self.last_request_id += 1
def request_frame(self, req: InferenceRequest, sync: bool = False) -> asyncio.Task | InferenceResult:
qp = "?sync=1" if sync else ""
url = self.url + "/request-inference" + qp
data = pickle.dumps(req)
def req_done_cb(task_or_res: asyncio.Task | httpx.Response) -> None:
if sync:
res: httpx.Response = task_or_res
else:
try:
res: httpx.Response = task_or_res.result()
except RuntimeError as e:
tlog.error(f"Inference request task failed!\n{e}")
if res.status_code != 202:
tlog.error(f"Inference request failed!\n{res.content}")
if sync:
return pickle.loads(res.content)
else:
if req.request_id not in self.pending_requests:
tlog.error(f"Inference request {req.request_id} was created on the server,"
f" but it is not part of our pending requests"
f" (pending: {list(self.pending_requests.keys())})")
state = self.pending_requests[req.request_id]
state.state = RequestState.REQUEST_SENT
state.task = None
task_or_res = httpx_request(
"post", url, data=data, timeout=self.req_timeout_s,
async_client=(None if sync else self.client),
callback=req_done_cb
)
if not sync:
self.pending_requests[req.request_id] = PendingRequest(
request_id=req.request_id,
state=RequestState.REQUEST_PENDING,
task=task_or_res,
)
return task_or_res
def _get_inference_results(self, request_id: str, on_result_received: callable) -> asyncio.Task:
def task_cb(task):
# Hide the progress bar (regardless of success or failure)
self.testbed.gen3c_inference_progress = -1.0
try:
res: httpx.Response = task.result()
except RuntimeError as e:
tlog.error(f"Results request task for inference {request_id} failed!\n{e}")
if res.status_code == 503:
# Result not ready yet, wait some more
on_result_received(result=None, response=res)
return
elif res.status_code != 200:
# Result failed, we shouldn't retry further
on_result_received(result=None, response=res, failed=True)
return
# Result ready
on_result_received(pickle.loads(res.content), response=res)
return
def progress_cb(progress: float, bar: tqdm, **kwargs):
total_mb = bar.total / (1024 * 1024)
self.testbed.gen3c_inference_info = f"Downloading inference results ({total_mb:.1f} MB)"
self.testbed.gen3c_inference_progress = progress
return httpx_request(
"get",
self.url + f"/inference-result?request_id={request_id}",
# Waiting for the model to finish inference can be very long,
# especially for single-GPU inference.
timeout=10 * self.req_timeout_s,
progress=True,
desc=f"Inference results for {request_id}",
async_client=self.client,
callback=task_cb,
progress_callback=progress_cb
)
# ----------
def load_seeding_data(self, seeding_data_path: str, display: bool = True,
normalize_cameras: bool = False) -> SeedingRequest:
if not os.path.exists(seeding_data_path):
tlog.error(f"Cannot seed with invalid path: \"{seeding_data_path}\"")
return None
tlog.info(f"Seeding model from \"{seeding_data_path}\"")
req = load_v2v_seeding_data(seeding_data_path, max_frames=self.seed_max_frames,
frames_stride=self.seed_stride)
if normalize_cameras:
if isinstance(req, CompressedSeedingRequest):
raise NotImplementedError("Normalizing cameras not implemented for compressed seeding data")
# Post-process the cameras so that they are centered at (0.5, 0.5, 0.5)
# and so that they fit within a reasonable scale.
current_origins = req.cameras_to_world[:, :3, 3]
current_center = np.mean(current_origins, axis=0)
current_scale = np.mean(np.linalg.norm(current_origins, axis=1))
# TODO: robust scale estimation using the median depth as well
if req.depths is not None:
median_depth = np.nanmedian(req.depths)
current_scale = max(current_scale, median_depth)
# tlog.debug(f"Current scale: {current_scale}")
if current_scale != 0.0:
normalized_origins = (current_origins - current_center) / current_scale
new_center = np.array([0.5, 0.5, 0.5], dtype=np.float32)
# aabb_scale = np.linalg.norm(self.testbed.render_aabb.max - self.testbed.render_aabb.min)
# new_scale = aabb_scale / 4
new_scale = 1.0
req.cameras_to_world[:, :3, 3] = (normalized_origins * new_scale) + new_center
# Rescale the depth values by the same
req.depths *= new_scale / current_scale
# TODO: retain this information so that we can undo the transform when
# communicating with the server or saving stuff out.
if display and (req.depths is not None):
# If there's not depth data available at this point, we'll download it from the server
# when seeding is done, and display the frames then.
self.display_seeding_data(req, save_frames=self.testbed.gen3c_save_frames)
return req
def display_seeding_data(self, req: SeedingRequest, res: SeedingResult | None = None,
save_frames: bool = False) -> None:
self.testbed.clear_src_views()
if isinstance(req, CompressedSeedingRequest):
# Since the de-compression is done inline, we make sure not to
# populate uncompressed data in the request before sending it over.
req = deepcopy(req)
req.decompress()
images = req.images
depths = req.depths
if res is not None:
# Adopt extrinsics and intrinsics from the server, the model might
# have estimated them better than our hardcoded guess.
focal_lengths = res.focal_lengths.copy()
cameras_to_world = res.cameras_to_world
principal_points = res.principal_points
if res.depths is not None:
# TODO: the depth estimated by the server may have a completely different scale.
depths = res.depths
if res.depths.shape[1:] != images.shape[1:3]:
# Depth prediction took place on the server at a different resolution,
# let's resize the RGB images to match.
tlog.debug(f"Resizing seeding images for display to match depth resolution {depths.shape[1:3]}")
resized = []
for i in range(len(req)):
resized.append(
cv2.resize(images[i, ...], (depths.shape[2], depths.shape[1]),
interpolation=cv2.INTER_CUBIC)
)
# Let's assume that the inference server already adjusted the intrinsics
# to match the requested inference resolution.
# focal_lengths[i, 0] *= depths.shape[2] / images.shape[2]
# focal_lengths[i, 1] *= depths.shape[1] / images.shape[1]
images = np.stack(resized, axis=0)
else:
focal_lengths = req.focal_lengths.copy()
cameras_to_world = req.cameras_to_world
principal_points = req.principal_points
if save_frames:
os.makedirs(self.testbed.gen3c_output_dir, exist_ok=True)
for seed_i in range(len(req)):
res_id = f"seeding_{seed_i:04d}"
image = ensure_alpha_channel(images[seed_i, ...])
if save_frames:
safe_res_id = res_id
fname = join(self.testbed.gen3c_output_dir, f"rgb_{safe_res_id}.exr")
pyexr.write(fname, image)
if depths is not None:
fname = join(self.testbed.gen3c_output_dir, f"depth_{safe_res_id}.exr")
pyexr.write(fname, depths[seed_i, ...].astype(np.float32))
tlog.success(f"[+] Wrote seeding frame to: {fname}")
if depths is None:
# Still no depth values available, cannot display
continue
self.testbed.add_src_view(
cameras_to_world[seed_i, ...],
focal_lengths[seed_i][0],
focal_lengths[seed_i][1],
principal_points[seed_i][0],
principal_points[seed_i][1],
self.lens,
image,
depths[seed_i, ...],
# TODO: seeding request could also have timestamps
seed_i * 1 / 30,
is_srgb=True,
)
tlog.success(f"[+] Displaying seeding view: {res_id}")
tlog.info(f"Setting camera path from seeding view.")
# First, initialize the camera path from all seeding view.
self.set_max_number_of_displayed_views(len(req))
self.testbed.init_camera_path_from_reproject_src_cameras()
# Then, limit the number of displayed views so that rendering doesn't slow down too much.
self.set_max_number_of_displayed_views(8)
self.testbed.reset_accumulation(reset_pip=True)
def send_seeding_request(self, req: SeedingRequest, sync: bool = False) -> asyncio.Task | None:
"""
Note: we do seeding requests synchronously by default so that we don't have to implement
eager checking, etc.
"""
qp = "?sync=1" if sync else ""
url = self.url + "/seed-model" + qp
depth_was_missing = (req.depths is None)
def req_done_cb(task_or_res: asyncio.Task | httpx.Response) -> None:
# Hide the progress bar (regardless of success or failure)
self.testbed.gen3c_seeding_progress = -1.0
if sync:
res: httpx.Response = task_or_res
else:
try:
res: httpx.Response = task_or_res.result()
except RuntimeError as e:
tlog.error(f"Seeding request task failed!\n{e}")
return
if res.status_code >= 300:
tlog.error(f"Seeding request failed!\n{res.content}")
return None
if depth_was_missing:
response: SeedingResult = pickle.loads(res.content)
self.display_seeding_data(req, res=response, save_frames=self.testbed.gen3c_save_frames)
message = "Model seeded."
self.testbed.gen3c_info = "\n".join([
self.testbed.gen3c_info.split("\n")[0],
message
])
tlog.success(message)
def progress_cb(progress: float, **kwargs):
self.testbed.gen3c_seeding_progress = progress
if not isinstance(req, CompressedSeedingRequest):
req = req.compress()
data = pickle.dumps(req)
try:
progress_direction = "both" if depth_was_missing else "auto"
return httpx_request("post", url, data=data, timeout=self.req_timeout_s,
progress=True, progress_direction=progress_direction,
desc="Seeding",
async_client=(None if sync else self.client),
callback=req_done_cb,
progress_callback=progress_cb)
except (httpx.TimeoutException, httpx.ConnectError) as e:
tlog.error(f"Seeding request failed (timeout or connection error)!\n{e}")
return None
# ----------
def set_max_number_of_displayed_views(self, n_views: int) -> None:
tlog.info(f"Setting max number of displayed views to {n_views}")
# Jump to the last view.
self.testbed.reproject_max_src_view_index = min(self.testbed.reproject_src_views_count(), n_views)
def _transfer_in_progress(self) -> bool:
return (self.testbed.gen3c_inference_progress >= 0.0) or (self.testbed.gen3c_seeding_progress >= 0.0)
# ----------
def adapt_view_to_cameras(self, cameras_to_world: np.ndarray,
go_to_default_camera: bool = True) -> None:
"""
Analyzes the given set of cameras, and tries to adapt the current
up vector, default camera pose, etc to match.
Note: this hasn't been tested very thoroughly yet and could easily
do the wrong thing depending on the inputs.
"""
assert cameras_to_world.shape[1:] == (3, 4)
# --- Up vector
# Average of the cameras' individual up vectors, snapped to an axis.
mean_up = np.mean(cameras_to_world[:, :3, 1], axis=0)
up_axis = np.argmax(np.abs(mean_up))
up = np.zeros((3,), dtype=np.float32)
up[up_axis] = -np.sign(mean_up[up_axis])
self.testbed.up_dir = up
# --- Default camera pose
default_c2w = cameras_to_world[0, :3, :]
# Note: `default_camera` is technically a 4x3 camera, but the bindings
# expose it as a 3x4 matrix, so we can set it as normal here.
self.testbed.default_camera = default_c2w
tlog.debug(f"Based on the seeding data, setting up dir to {self.testbed.up_dir}"
f" and default camera to:\n{self.testbed.default_camera}")
if go_to_default_camera:
self.testbed.reset_camera()
def gui_callback(self, event: str) -> bool:
match event:
case "seed_model":
seed_req = self.load_seeding_data(self.testbed.gen3c_seed_path)
if seed_req is not None:
self.adapt_view_to_cameras(seed_req.cameras_to_world)
self.send_seeding_request(seed_req)
# "True" means we handled the event, not that seeding was successful.
return True
case "request_inference":
self.request_frames(sync=False)
return True
case "abort_inference":
tlog.info("Aborting inference request...")
tlog.error("Not implemented yet: aborting an ongoing inference request. Ignoring.")
return True
return False
def file_drop_callback(self, paths: list[str]) -> bool:
tlog.info(f"Received {len(paths)} file{'s' if len(paths) > 1 else ''} via drag & drop: {paths}")
for path in paths:
ext = os.path.splitext(path)[1].lower()
if os.path.isdir(path) or ext in (".jpg", ".png", ".exr"):
self.testbed.gen3c_seed_path = path
self.seeding_pending = True
elif ext == ".json":
try:
self.testbed.load_camera_path(path)
except RuntimeError as e:
tlog.error(f"Error loading camera path, perhaps the formata is incorrect?\n\t{e}")
else:
tlog.error(f"Don't know how to handle given file: {path}")
return True
if __name__ == "__main__":
parser = argparse.ArgumentParser("client.py")
parser.add_argument("files", nargs="*",
help="Files to be loaded. Can be a camera path, scene name,"
" seed image, or pre-processed video directory.")
parser.add_argument("--host", default="127.0.0.1")
parser.add_argument("--port", default=8000)
parser.add_argument("--request-latency-ms", "--latency", default=250)
parser.add_argument("--inference-resolution", nargs=2, default=(576, 320))
parser.add_argument("--vr", action="store_true")
parser.add_argument("--seed-max-frames", type=int, default=None,
help="If seeding from a video, maximum number of frames to use.")
parser.add_argument("--seed-stride", type=int, default=1,
help="If seeding from a video, number of frames to skip when reading (stride).")
parser.add_argument("--output-dir", "-o", type=str, default=None,
help="Directory in which to save the inference results.")
args = parser.parse_args()
client = Gen3cClient(**vars(args))
asyncio.run(client.run())