Spaces:
Build error
Build error
Merged remote changes and resolved conflicts
Browse files- Dockerfile +108 -0
Dockerfile
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Use NVIDIA PyTorch container as base image
|
17 |
+
FROM nvcr.io/nvidia/pytorch:24.10-py3
|
18 |
+
|
19 |
+
# Install basic tools and clean apt cache
|
20 |
+
RUN apt-get update && apt-get install -y git tree ffmpeg wget \
|
21 |
+
&& apt-get clean \
|
22 |
+
&& rm -rf /var/lib/apt/lists/*
|
23 |
+
|
24 |
+
# Create symlinks for bash and libcuda
|
25 |
+
RUN rm /bin/sh && ln -s /bin/bash /bin/sh && ln -s /lib64/libcuda.so.1 /lib64/libcuda.so
|
26 |
+
|
27 |
+
# Set the working directory inside the container
|
28 |
+
WORKDIR /app
|
29 |
+
|
30 |
+
# Copy the cosmos-predict1.yaml and requirements.txt files to the container root
|
31 |
+
COPY ./cosmos-predict1.yaml /cosmos-predict1.yaml
|
32 |
+
COPY ./requirements.txt /requirements.txt
|
33 |
+
|
34 |
+
# Copy all your project files (including gui/, cosmos_predict1/, etc.) into the /app directory.
|
35 |
+
COPY . /app
|
36 |
+
|
37 |
+
# Step 1: Install Miniconda
|
38 |
+
# Install Miniconda to /opt/miniconda3 for consistency
|
39 |
+
RUN echo "Installing Miniconda..." && \
|
40 |
+
mkdir -p /opt/miniconda3 && \
|
41 |
+
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O /opt/miniconda3/miniconda.sh && \
|
42 |
+
bash /opt/miniconda3/miniconda.sh -b -u -p /opt/miniconda3 && \
|
43 |
+
rm /opt/miniconda3/miniconda.sh
|
44 |
+
|
45 |
+
# Step 2: Configure Conda and set PATH
|
46 |
+
# Add Miniconda to PATH for current and subsequent RUN commands
|
47 |
+
ENV PATH="/opt/miniconda3/bin:$PATH"
|
48 |
+
RUN echo "Configuring Conda..." && \
|
49 |
+
conda config --set auto_activate_base false && \
|
50 |
+
conda config --set auto_update_conda false && \
|
51 |
+
conda config --set show_channel_urls true && \
|
52 |
+
conda config --set channel_priority strict && \
|
53 |
+
conda config --set safety_checks disabled && \
|
54 |
+
conda config --add channels conda-forge && \
|
55 |
+
conda config --set always_yes true && \
|
56 |
+
conda config --set restore_free_channel true && \
|
57 |
+
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/main && \
|
58 |
+
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/r
|
59 |
+
|
60 |
+
# Step 3: Create the conda environment from the YAML file
|
61 |
+
RUN echo "Creating conda environment from YAML..." && \
|
62 |
+
conda env create --file /cosmos-predict1.yaml
|
63 |
+
|
64 |
+
# Step 4: Activate environment and install core pip requirements
|
65 |
+
# Add the new environment's bin directory to PATH for subsequent `pip` calls
|
66 |
+
ENV PATH="/opt/miniconda3/envs/cosmos-predict1/bin:$PATH"
|
67 |
+
RUN echo "Installing core pip requirements from requirements.txt..." && \
|
68 |
+
pip install --no-cache-dir -r /requirements.txt
|
69 |
+
|
70 |
+
# Step 5: Create necessary symlinks
|
71 |
+
# Use CONDA_PREFIX if set, otherwise fallback to expected path
|
72 |
+
RUN echo "Creating symlinks..." && \
|
73 |
+
ln -sf ${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1}/lib/python3.10/site-packages/nvidia/*/include/* ${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1}/include/ && \
|
74 |
+
ln -sf ${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1}/lib/python3.10/site-packages/nvidia/*/include/* ${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1}/include/python3.10 && \
|
75 |
+
ln -sf ${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1}/lib/python3.10/site-packages/triton/backends/nvidia/include/* ${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1}/include/
|
76 |
+
|
77 |
+
# Step 6: Install specific pip packages
|
78 |
+
RUN echo "Installing specific pip packages..." && \
|
79 |
+
pip install "fastapi[standard]" && \
|
80 |
+
pip install pyexr && \
|
81 |
+
pip install transformer-engine[pytorch]==1.12.0
|
82 |
+
|
83 |
+
# Step 7: Clone and install Apex
|
84 |
+
RUN echo "Cloning and installing Apex..." && \
|
85 |
+
git clone https://github.com/NVIDIA/apex /app/apex_temp && \
|
86 |
+
cd /app/apex_temp && \
|
87 |
+
CUDA_HOME=${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1} pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" . && \
|
88 |
+
rm -rf /app/apex_temp # Clean up cloned repo after install
|
89 |
+
|
90 |
+
# Step 8: Install MoGe
|
91 |
+
RUN echo "Installing MoGe..." && \
|
92 |
+
pip install git+https://github.com/microsoft/MoGe.git
|
93 |
+
|
94 |
+
# Set environment variables for your application at runtime
|
95 |
+
# Assumes your checkpoints are in /app/checkpoints after COPY . /app
|
96 |
+
ENV GEN3C_CKPT_PATH="/app/checkpoints"
|
97 |
+
# Specify GPU count if your app needs it (e.g., "ALL" for all available)
|
98 |
+
ENV GEN3C_GPU_COUNT="ALL"
|
99 |
+
# Standard path for CUDA_HOME in NVIDIA PyTorch Docker images
|
100 |
+
ENV CUDA_HOME="/usr/local/cuda"
|
101 |
+
|
102 |
+
# Expose the port your FastAPI server will listen on
|
103 |
+
EXPOSE 7860
|
104 |
+
|
105 |
+
# Default command: Activate the conda environment and then run the FastAPI server.
|
106 |
+
# This ensures all your dependencies are available and the server starts correctly.
|
107 |
+
# 'gui.api.server:app' is the correct path for your FastAPI application.
|
108 |
+
CMD ["bash", "-c", "source /opt/miniconda3/bin/activate cosmos-predict1 && uvicorn gui.api.server:app --host 0.0.0.0 --port 7860"]
|