elungky commited on
Commit
8c961a6
·
1 Parent(s): 49860eb

Minimal Dockerfile for pre-built image, removed redundant build steps

Browse files
Files changed (1) hide show
  1. Dockerfile +1 -92
Dockerfile CHANGED
@@ -17,95 +17,4 @@
17
  # FROM nvcr.io/nvidia/pytorch:24.10-py3
18
 
19
  # This Dockerfile will simply pull your pre-built image and run it.
20
- FROM elungky/gen3c:latest
21
-
22
- # Install basic tools and clean apt cache
23
- RUN apt-get update && apt-get install -y git tree ffmpeg wget \
24
- && apt-get clean \
25
- && rm -rf /var/lib/apt/lists/*
26
-
27
- # Create symlinks for bash and libcuda
28
- RUN rm /bin/sh && ln -s /bin/bash /bin/sh && ln -s /lib64/libcuda.so.1 /lib64/libcuda.so
29
-
30
- # Set the working directory inside the container
31
- WORKDIR /app
32
-
33
- # Copy the cosmos-predict1.yaml and requirements.txt files to the container root
34
- COPY ./cosmos-predict1.yaml /cosmos-predict1.yaml
35
- COPY ./requirements.txt /requirements.txt
36
-
37
- # Copy all your project files (including gui/, cosmos_predict1/, etc.) into the /app directory.
38
- COPY . /app
39
-
40
- # Step 1: Install Miniconda
41
- # Install Miniconda to /opt/miniconda3 for consistency
42
- RUN echo "Installing Miniconda..." && \
43
- mkdir -p /opt/miniconda3 && \
44
- wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O /opt/miniconda3/miniconda.sh && \
45
- bash /opt/miniconda3/miniconda.sh -b -u -p /opt/miniconda3 && \
46
- rm /opt/miniconda3/miniconda.sh
47
-
48
- # Step 2: Configure Conda and set PATH
49
- # Add Miniconda to PATH for current and subsequent RUN commands
50
- ENV PATH="/opt/miniconda3/bin:$PATH"
51
- RUN echo "Configuring Conda..." && \
52
- conda config --set auto_activate_base false && \
53
- conda config --set auto_update_conda false && \
54
- conda config --set show_channel_urls true && \
55
- conda config --set channel_priority strict && \
56
- conda config --set safety_checks disabled && \
57
- conda config --add channels conda-forge && \
58
- conda config --set always_yes true && \
59
- conda config --set restore_free_channel true && \
60
- conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/main && \
61
- conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/r
62
-
63
- # Step 3: Create the conda environment from the YAML file
64
- RUN echo "Creating conda environment from YAML..." && \
65
- conda env create --file /cosmos-predict1.yaml
66
-
67
- # Step 4: Activate environment and install core pip requirements
68
- # Add the new environment's bin directory to PATH for subsequent `pip` calls
69
- ENV PATH="/opt/miniconda3/envs/cosmos-predict1/bin:$PATH"
70
- RUN echo "Installing core pip requirements from requirements.txt..." && \
71
- pip install --no-cache-dir -r /requirements.txt
72
-
73
- # Step 5: Create necessary symlinks
74
- # Use CONDA_PREFIX if set, otherwise fallback to expected path
75
- RUN echo "Creating symlinks..." && \
76
- ln -sf ${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1}/lib/python3.10/site-packages/nvidia/*/include/* ${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1}/include/ && \
77
- ln -sf ${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1}/lib/python3.10/site-packages/nvidia/*/include/* ${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1}/include/python3.10 && \
78
- ln -sf ${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1}/lib/python3.10/site-packages/triton/backends/nvidia/include/* ${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1}/include/
79
-
80
- # Step 6: Install specific pip packages
81
- RUN echo "Installing specific pip packages..." && \
82
- pip install "fastapi[standard]" && \
83
- pip install pyexr && \
84
- pip install transformer-engine[pytorch]==1.12.0
85
-
86
- # Step 7: Clone and install Apex
87
- RUN echo "Cloning and installing Apex..." && \
88
- git clone https://github.com/NVIDIA/apex /app/apex_temp && \
89
- cd /app/apex_temp && \
90
- CUDA_HOME=${CONDA_PREFIX:-/opt/miniconda3/envs/cosmos-predict1} pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" . && \
91
- rm -rf /app/apex_temp # Clean up cloned repo after install
92
-
93
- # Step 8: Install MoGe
94
- RUN echo "Installing MoGe..." && \
95
- pip install git+https://github.com/microsoft/MoGe.git
96
-
97
- # Set environment variables for your application at runtime
98
- # Assumes your checkpoints are in /app/checkpoints after COPY . /app
99
- ENV GEN3C_CKPT_PATH="/app/checkpoints"
100
- # Specify GPU count if your app needs it (e.g., "ALL" for all available)
101
- ENV GEN3C_GPU_COUNT="ALL"
102
- # Standard path for CUDA_HOME in NVIDIA PyTorch Docker images
103
- ENV CUDA_HOME="/usr/local/cuda"
104
-
105
- # Expose the port your FastAPI server will listen on
106
- EXPOSE 7860
107
-
108
- # Default command: Activate the conda environment and then run the FastAPI server.
109
- # This ensures all your dependencies are available and the server starts correctly.
110
- # 'gui.api.server:app' is the correct path for your FastAPI application.
111
- CMD ["bash", "-c", "source /opt/miniconda3/bin/activate cosmos-predict1 && uvicorn gui.api.server:app --host 0.0.0.0 --port 7860"]
 
17
  # FROM nvcr.io/nvidia/pytorch:24.10-py3
18
 
19
  # This Dockerfile will simply pull your pre-built image and run it.
20
+ FROM elungky/gen3c:latest