# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config for cosmos_ar project.""" import os from typing import Any, List import attrs from cosmos_predict1.autoregressive.configs.registry import register_configs from cosmos_predict1.autoregressive.trainer import Trainer from cosmos_predict1.utils import config, log from cosmos_predict1.utils.config_helper import import_all_modules_from_package @attrs.define(slots=False) class Config(config.Config): defaults: List[Any] = attrs.field( factory=lambda: [ "_self_", {"model": None}, {"data_train": "mock_video"}, {"data_val": None}, {"optimizer": "fused_adamw"}, {"scheduler": "warmup_cosine_lr"}, {"checkpoint": "local"}, {"callbacks": "basic"}, {"global_config": None}, {"experiment": None}, ] ) def validate(self) -> None: """Validate that the config has all required fields.""" assert self.job.project != "", "job.project is not set" assert self.job.group != "", "job.group is not set" assert self.job.name != "", "job.name is not set" log.info("Validating config for cosmos_autoregressive job") # FSDP config check if self.model.model_config.fsdp_enabled: assert self.trainer.distributed_parallelism == "fsdp" else: assert self.trainer.distributed_parallelism == "ddp" # Transformer Engine config check if self.model.model_config.backend == "transformer_engine": assert ( "NVTE_FLASH_ATTN" in os.environ and os.environ["NVTE_FLASH_ATTN"] == "1" ) # Enable Flash attention for transformer engine # TP, CP config check if self.model_parallel is not None: if self.model_parallel.context_parallel_size > 1: assert ( self.model.model_config.backend == "transformer_engine" ), "Context parallelism is only supported in transformer engine." if self.model_parallel.tensor_model_parallel_size > 1: assert ( self.model.model_config.set_parallel_mode ), "Tensor model parallelism is only supported in parallel mode." if self.model_parallel.sequence_parallel: assert ( self.model_parallel.tensor_model_parallel_size > 1 ), "Sequence parallelism is only supported in tensor model parallelism." assert ( self.model.model_config.backend == "transformer_engine" ), "Sequence parallelism is only supported in transformer engine." def make_config(): c = Config( model=None, optimizer=None, scheduler=None, dataloader_train=None, dataloader_val=None, checkpoint=None, ) c.job.project = "cosmos_autoregressive" c.job.group = "debug" c.job.name = "default_${now:%Y-%m-%d}_${now:%H-%M-%S}" c.trainer.type = Trainer c.trainer.run_validation = True c.trainer.seed = 0 c.trainer.max_iter = 10 c.trainer.logging_iter = 1 c.trainer.callbacks = None register_configs() # experiment config are defined in the experiment folder # call import_all_modules_from_package to register them import_all_modules_from_package("cosmos_predict1.autoregressive.configs.experiment") return c