# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """dataloader config options Available dataloader options: image_loader_basic video_loader_basic joint_image_video_loader_basic """ from torch.utils.data import DataLoader from cosmos_predict1.tokenizer.training.configs.base.mock_data import get_mock_video_dataloader from cosmos_predict1.tokenizer.training.datasets.dataset_provider import dataset_entry from cosmos_predict1.utils.lazy_config import LazyCall DATALOADER_OPTIONS = {} def dataloader_register(key): def decorator(func): DATALOADER_OPTIONS[key] = func return func return decorator @dataloader_register("video_loader_basic") def get_video_dataloader( dataset_name, is_train, batch_size=1, num_video_frames=25, resolution="720", crop_height=128, num_workers=8, ): if dataset_name.startswith("mock"): return get_mock_video_dataloader( batch_size=batch_size, is_train=is_train, num_video_frames=num_video_frames, resolution=resolution, crop_height=crop_height, ) return LazyCall(DataLoader)( dataset=LazyCall(dataset_entry)( dataset_name=dataset_name, dataset_type="video", is_train=is_train, resolution=resolution, crop_height=crop_height, num_video_frames=num_video_frames, ), batch_size=batch_size, # 2 num_workers=num_workers, # 8 prefetch_factor=2, shuffle=None, # do we need this? sampler=None, persistent_workers=False, pin_memory=True, )