/* * Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved. * * NVIDIA CORPORATION and its licensors retain all intellectual property * and proprietary rights in and to this software, related documentation * and any modifications thereto. Any use, reproduction, disclosure or * distribution of this software and related documentation without an express * license agreement from NVIDIA CORPORATION is strictly prohibited. */ /** @file pybind11_vec.cuh * @author Thomas Müller, NVIDIA * @brief pybind11 bindings for NGP's vector and matrix types. Adapted from * Patrik Huber's glm binding code per the BSD license of pybind11. */ #pragma once #include #include #include #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable: 4127) // warning C4127: Conditional expression is constant #endif NAMESPACE_BEGIN(pybind11) NAMESPACE_BEGIN(detail) /** * @file utils/pybind11_glm.hpp * @brief Transparent conversion to and from Python for glm vector and matrix types. * * All converters for matrices assume col-major storage of glm, the default. * Things will likely break if non-default storage order is used. */ template struct type_caster> { using vector_type = ngp::tvec; using Scalar = T; static constexpr std::size_t num_elements = N; bool load(handle src, bool) { array_t buf(src, true); if (!buf.check()) return false; if (buf.ndim() == 1) // a 1-dimensional vector { if (buf.shape(0) != num_elements) { return false; // not a 2-elements vector } if (buf.strides(0) != sizeof(Scalar)) { std::cout << "An array with non-standard strides is given. Please pass a contiguous array." << std::endl; return false; } value = vector_type(buf.mutable_data()); // make_vec* copies the data (unnecessarily) } else { // buf.ndim() != 1 return false; } return true; } static handle cast(const vector_type& src, return_value_policy /* policy */, handle /* parent */) { return array( num_elements, // shape src.data() // data ).release(); } // Specifies the doc-string for the type in Python: PYBIND11_TYPE_CASTER(vector_type, _("vec")); }; template struct type_caster> { using matrix_type = ngp::tmat; using Scalar = T; static constexpr std::size_t num_rows = M; static constexpr std::size_t num_cols = N; bool load(handle src, bool) { array_t buf(src, true); if (!buf.check()) return false; if (buf.ndim() == 2) // a 2-dimensional matrix { if (buf.shape(0) != num_rows || buf.shape(1) != num_cols) { return false; // not a 4x4 matrix } if (buf.strides(0) / sizeof(Scalar) != num_cols || buf.strides(1) != sizeof(Scalar)) { std::cout << "An array with non-standard strides is given. Please pass a contiguous array." << std::endl; return false; } // What we get from Python is laid out in row-major memory order, while GLM's // storage is col-major, thus, we transpose. value = ngp::transpose(matrix_type(buf.mutable_data())); // make_mat*() copies the data (unnecessarily) } else { // buf.ndim() != 2 return false; } return true; } static handle cast(const matrix_type& src, return_value_policy /* policy */, handle /* parent */) { return array( { num_rows, num_cols }, // shape { sizeof(Scalar), sizeof(Scalar) * num_rows }, // strides - flip the row/col layout! src.data() // data ).release(); } // Specifies the doc-string for the type in Python: PYBIND11_TYPE_CASTER(matrix_type, _("mat")); }; NAMESPACE_END(detail) NAMESPACE_END(pybind11) #if defined(_MSC_VER) #pragma warning(pop) #endif