/* * SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** @file vec_pybind11.h * @author Thomas Müller, NVIDIA * @brief pybind11 bindings for NGP's vector and matrix types. Adapted from * Patrik Huber's glm binding code per the BSD license of pybind11. */ #pragma once #include #include #if defined(_MSC_VER) #pragma warning(push) #pragma warning(disable: 4127) // warning C4127: Conditional expression is constant #endif namespace pybind11 { namespace detail { template struct type_caster> { using vector_type = tcnn::tvec; using Scalar = T; static constexpr std::size_t num_elements = N; bool load(handle src, bool) { auto buf = array_t::ensure(src); if (!buf) { return false; } if (buf.ndim() != 1) { return false; // not a rank-1 tensor (i.e. vector) } if (buf.shape(0) != num_elements) { return false; // not a 2-elements vector } for (size_t i = 0; i < num_elements; ++i) { value[i] = *buf.data(i); } return true; } static handle cast(const vector_type& src, return_value_policy, handle) { return array( num_elements, src.data() ).release(); } // Specifies the doc-string for the type in Python: PYBIND11_TYPE_CASTER(vector_type, _("vec")); }; template struct type_caster> { using matrix_type = tcnn::tmat; using Scalar = T; static constexpr std::size_t num_rows = M; static constexpr std::size_t num_cols = N; bool load(handle src, bool) { auto buf = array_t::ensure(src); if (!buf) { return false; } if (buf.ndim() != 2) { return false; // not a rank-2 tensor (i.e. matrix) } if (buf.shape(0) != num_rows || buf.shape(1) != num_cols) { return false; // not a 4x4 matrix } for (size_t i = 0; i < num_cols; ++i) { for (size_t j = 0; j < num_rows; ++j) { value[i][j] = *buf.data(j, i); } } return true; } static handle cast(const matrix_type& src, return_value_policy, handle) { return array( { num_rows, num_cols }, { sizeof(Scalar), sizeof(Scalar) * num_rows }, // strides - flip the row/col layout! src.data() ).release(); } // Specifies the doc-string for the type in Python: PYBIND11_TYPE_CASTER(matrix_type, _("mat")); }; } } #if defined(_MSC_VER) #pragma warning(pop) #endif