Spaces:
Sleeping
Sleeping
| import io | |
| import os | |
| import numpy as np | |
| import streamlit as st | |
| import requests | |
| from PIL import Image | |
| from model import classify | |
| import cv2 | |
| # def get_model(): | |
| # return bone_frac() | |
| # pred_model = get_model() | |
| # pred_model=bone_frac() | |
| def predict(): | |
| c=classify('tmp.jpg') | |
| st.markdown('#### Predicted Captions:') | |
| st.write(c) | |
| st.title('Image Captioner') | |
| img_url = st.text_input(label='Enter Image URL') | |
| if (img_url != "") and (img_url != None): | |
| img = Image.open(requests.get(img_url, stream=True).raw) | |
| img = img.convert('RGB') | |
| st.image(img) | |
| img.save('tmp.jpg') | |
| predict() | |
| os.remove('tmp.jpg') | |
| hide_streamlit_style = """ | |
| <style> | |
| #MainMenu {visibility: hidden;} | |
| footer {visibility: hidden;} | |
| </style> | |
| """ | |
| st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
| # st.markdown('<center style="opacity: 70%">OR</center>', unsafe_allow_html=True) | |
| img_upload = st.file_uploader(label='Upload Image', type=['jpg', 'png', 'jpeg']) | |
| if img_upload != None: | |
| img = img_upload.read() | |
| img = Image.open(io.BytesIO(img)) | |
| img = img.convert('RGB') | |
| img=np.asarray(img) | |
| print(img) | |
| # img=cv2.imread(img) | |
| # img.save('tmp.jpg') | |
| st.image(img) | |
| c=classify(img) | |
| st.markdown('#### Predicted Captions:') | |
| st.write(c) | |
| # predict() | |
| # os.remove('tmp.jpg') |