Spaces:
Runtime error
Runtime error
update save path
Browse files
app.py
CHANGED
|
@@ -27,6 +27,8 @@ MODEL_CKPT_PATH = "code/checkpoints/tgs_lvis_100v_rel.ckpt"
|
|
| 27 |
CONFIG = "code/configs/single-rel.yaml"
|
| 28 |
EXP_ROOT_DIR = "./outputs-gradio"
|
| 29 |
|
|
|
|
|
|
|
| 30 |
gpu = os.environ.get("CUDA_VISIBLE_DEVICES", "0")
|
| 31 |
device = "cuda:{}".format(gpu) if torch.cuda.is_available() else "cpu"
|
| 32 |
|
|
@@ -52,7 +54,11 @@ HEADER = """
|
|
| 52 |
|
| 53 |
TGS enables fast reconstruction from single-view image in a few seconds based on a hybrid Triplane-Gaussian 3D representation.
|
| 54 |
|
| 55 |
-
This model is trained on Objaverse-LVIS (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
"""
|
| 57 |
|
| 58 |
def preprocess(image_path, save_path=None, lower_contrast=False):
|
|
@@ -71,41 +77,43 @@ def preprocess(image_path, save_path=None, lower_contrast=False):
|
|
| 71 |
return save_path
|
| 72 |
|
| 73 |
def init_trial_dir():
|
| 74 |
-
if not os.path.exists(EXP_ROOT_DIR):
|
| 75 |
-
os.makedirs(EXP_ROOT_DIR, exist_ok=True)
|
| 76 |
trial_dir = tempfile.TemporaryDirectory(dir=EXP_ROOT_DIR).name
|
| 77 |
-
|
| 78 |
return trial_dir
|
| 79 |
|
| 80 |
@torch.no_grad()
|
| 81 |
def infer(image_path: str,
|
| 82 |
cam_dist: float,
|
|
|
|
| 83 |
only_3dgs: bool = False):
|
| 84 |
data_cfg = deepcopy(base_cfg.data)
|
| 85 |
data_cfg.only_3dgs = only_3dgs
|
| 86 |
data_cfg.cond_camera_distance = cam_dist
|
|
|
|
| 87 |
data_cfg.image_list = [image_path]
|
| 88 |
dm = tgs.find(base_cfg.data_cls)(data_cfg)
|
| 89 |
|
| 90 |
dm.setup()
|
| 91 |
for batch_idx, batch in enumerate(dm.test_dataloader()):
|
| 92 |
batch = todevice(batch, device)
|
| 93 |
-
system.test_step(batch, batch_idx, save_3dgs=only_3dgs)
|
| 94 |
if not only_3dgs:
|
| 95 |
-
system.on_test_epoch_end()
|
| 96 |
|
| 97 |
def run(image_path: str,
|
| 98 |
-
cam_dist: float
|
| 99 |
-
|
| 100 |
-
save_path =
|
| 101 |
gs = glob.glob(os.path.join(save_path, "*.ply"))[0]
|
|
|
|
| 102 |
return gs
|
| 103 |
|
| 104 |
def run_video(image_path: str,
|
| 105 |
-
cam_dist: float
|
| 106 |
-
|
| 107 |
-
|
| 108 |
video = glob.glob(os.path.join(save_path, "*.mp4"))[0]
|
|
|
|
| 109 |
return video
|
| 110 |
|
| 111 |
def launch(port):
|
|
@@ -118,8 +126,8 @@ def launch(port):
|
|
| 118 |
with gr.Row(variant='panel'):
|
| 119 |
with gr.Column(scale=1):
|
| 120 |
input_image = gr.Image(value=None, width=512, height=512, type="filepath", label="Input Image")
|
| 121 |
-
camera_dist_slider = gr.Slider(1.0, 4.0, value=1.
|
| 122 |
-
img_run_btn = gr.Button("Reconstruction")
|
| 123 |
|
| 124 |
gr.Examples(
|
| 125 |
examples=[
|
|
@@ -148,6 +156,7 @@ def launch(port):
|
|
| 148 |
output_video = gr.Video(value=None, width="auto", label="Rendered Video", autoplay=True)
|
| 149 |
output_3dgs = Model3DGS(value=None, label="3D Model")
|
| 150 |
|
|
|
|
| 151 |
img_run_btn.click(
|
| 152 |
fn=preprocess,
|
| 153 |
inputs=[input_image],
|
|
@@ -155,13 +164,14 @@ def launch(port):
|
|
| 155 |
concurrency_limit=1,
|
| 156 |
).success(
|
| 157 |
fn=init_trial_dir,
|
|
|
|
| 158 |
concurrency_limit=1,
|
| 159 |
).success(fn=run,
|
| 160 |
-
inputs=[seg_image, camera_dist_slider],
|
| 161 |
outputs=[output_3dgs],
|
| 162 |
concurrency_limit=1
|
| 163 |
).success(fn=run_video,
|
| 164 |
-
inputs=[seg_image, camera_dist_slider],
|
| 165 |
outputs=[output_video],
|
| 166 |
concurrency_limit=1)
|
| 167 |
|
|
|
|
| 27 |
CONFIG = "code/configs/single-rel.yaml"
|
| 28 |
EXP_ROOT_DIR = "./outputs-gradio"
|
| 29 |
|
| 30 |
+
os.makedirs(EXP_ROOT_DIR, exist_ok=True)
|
| 31 |
+
|
| 32 |
gpu = os.environ.get("CUDA_VISIBLE_DEVICES", "0")
|
| 33 |
device = "cuda:{}".format(gpu) if torch.cuda.is_available() else "cpu"
|
| 34 |
|
|
|
|
| 54 |
|
| 55 |
TGS enables fast reconstruction from single-view image in a few seconds based on a hybrid Triplane-Gaussian 3D representation.
|
| 56 |
|
| 57 |
+
This model is trained on Objaverse-LVIS (**~40K** synthetic objects) only. And note that we normalize the input camera pose to a pre-set viewpoint during training stage following LRM, rather than directly using camera pose of input camera as implemented in our original paper.
|
| 58 |
+
|
| 59 |
+
**Tips:**
|
| 60 |
+
1. If you find the result is unsatisfied, please try to change the camera distance. It perhaps improves the results.
|
| 61 |
+
2. Please wait until the completion of the reconstruction of the previous model before proceeding with the next one, otherwise, it may cause bug. We will fix it soon.
|
| 62 |
"""
|
| 63 |
|
| 64 |
def preprocess(image_path, save_path=None, lower_contrast=False):
|
|
|
|
| 77 |
return save_path
|
| 78 |
|
| 79 |
def init_trial_dir():
|
|
|
|
|
|
|
| 80 |
trial_dir = tempfile.TemporaryDirectory(dir=EXP_ROOT_DIR).name
|
| 81 |
+
os.makedirs(trial_dir, exist_ok=True)
|
| 82 |
return trial_dir
|
| 83 |
|
| 84 |
@torch.no_grad()
|
| 85 |
def infer(image_path: str,
|
| 86 |
cam_dist: float,
|
| 87 |
+
save_path: str,
|
| 88 |
only_3dgs: bool = False):
|
| 89 |
data_cfg = deepcopy(base_cfg.data)
|
| 90 |
data_cfg.only_3dgs = only_3dgs
|
| 91 |
data_cfg.cond_camera_distance = cam_dist
|
| 92 |
+
data_cfg.eval_camera_distance = cam_dist
|
| 93 |
data_cfg.image_list = [image_path]
|
| 94 |
dm = tgs.find(base_cfg.data_cls)(data_cfg)
|
| 95 |
|
| 96 |
dm.setup()
|
| 97 |
for batch_idx, batch in enumerate(dm.test_dataloader()):
|
| 98 |
batch = todevice(batch, device)
|
| 99 |
+
system.test_step(save_path, batch, batch_idx, save_3dgs=only_3dgs)
|
| 100 |
if not only_3dgs:
|
| 101 |
+
system.on_test_epoch_end(save_path)
|
| 102 |
|
| 103 |
def run(image_path: str,
|
| 104 |
+
cam_dist: float,
|
| 105 |
+
save_path: str):
|
| 106 |
+
infer(image_path, cam_dist, save_path, only_3dgs=True)
|
| 107 |
gs = glob.glob(os.path.join(save_path, "*.ply"))[0]
|
| 108 |
+
# print("save gs", gs)
|
| 109 |
return gs
|
| 110 |
|
| 111 |
def run_video(image_path: str,
|
| 112 |
+
cam_dist: float,
|
| 113 |
+
save_path: str):
|
| 114 |
+
infer(image_path, cam_dist, save_path)
|
| 115 |
video = glob.glob(os.path.join(save_path, "*.mp4"))[0]
|
| 116 |
+
# print("save video", video)
|
| 117 |
return video
|
| 118 |
|
| 119 |
def launch(port):
|
|
|
|
| 126 |
with gr.Row(variant='panel'):
|
| 127 |
with gr.Column(scale=1):
|
| 128 |
input_image = gr.Image(value=None, width=512, height=512, type="filepath", label="Input Image")
|
| 129 |
+
camera_dist_slider = gr.Slider(1.0, 4.0, value=1.9, step=0.1, label="Camera Distance")
|
| 130 |
+
img_run_btn = gr.Button("Reconstruction", variant="primary")
|
| 131 |
|
| 132 |
gr.Examples(
|
| 133 |
examples=[
|
|
|
|
| 156 |
output_video = gr.Video(value=None, width="auto", label="Rendered Video", autoplay=True)
|
| 157 |
output_3dgs = Model3DGS(value=None, label="3D Model")
|
| 158 |
|
| 159 |
+
trial_dir = gr.State()
|
| 160 |
img_run_btn.click(
|
| 161 |
fn=preprocess,
|
| 162 |
inputs=[input_image],
|
|
|
|
| 164 |
concurrency_limit=1,
|
| 165 |
).success(
|
| 166 |
fn=init_trial_dir,
|
| 167 |
+
outputs=[trial_dir],
|
| 168 |
concurrency_limit=1,
|
| 169 |
).success(fn=run,
|
| 170 |
+
inputs=[seg_image, camera_dist_slider, trial_dir],
|
| 171 |
outputs=[output_3dgs],
|
| 172 |
concurrency_limit=1
|
| 173 |
).success(fn=run_video,
|
| 174 |
+
inputs=[seg_image, camera_dist_slider, trial_dir],
|
| 175 |
outputs=[output_video],
|
| 176 |
concurrency_limit=1)
|
| 177 |
|