TiRex-demo / app.py
Blago123's picture
preset forecasting data used only when default forecast length is set, tested, updated README.md
8691d5d
raw
history blame
16.2 kB
import io
import pandas as pd
import torch
import plotly.graph_objects as go
from PIL import Image
import numpy as np
import gradio as gr
import os
from plotly.subplots import make_subplots
from tirex import load_model, ForecastModel
# ----------------------------
# Helper functions (logic mostly unchanged)
# ----------------------------
torch.manual_seed(42)
model: ForecastModel = load_model("NX-AI/TiRex",device='cuda')
def model_forecast(input_data, forecast_length=256, file_name=None):
if os.path.basename(file_name) == "loop.csv" and forecast_length==256:
_forecast_tensor = torch.load("data/loop_forecast_256.pt")
return _forecast_tensor[:,:forecast_length,:]
elif os.path.basename(file_name) == "ett2.csv" and forecast_length==256:
_forecast_tensor = torch.load("data/ett2_forecast_256.pt")
return _forecast_tensor[:,:forecast_length,:]
elif os.path.basename(file_name) == "air_passangers.csv"and forecast_length==48:
_forecast_tensor = torch.load("data/air_passengers_forecast_48.pt")
return _forecast_tensor[:,:forecast_length,:]
else:
forecast = model.forecast(context=input_data, prediction_length=forecast_length)
return forecast[0]
def load_table(file_path):
ext = file_path.split(".")[-1].lower()
if ext == "csv":
return pd.read_csv(file_path)
elif ext in ("xls", "xlsx"):
return pd.read_excel(file_path)
elif ext == "parquet":
return pd.read_parquet(file_path)
else:
raise ValueError("Unsupported format. Use CSV, XLS, XLSX, or PARQUET.")
def extract_names_and_update(file, preset_filename):
try:
# Determine which file to use and get default forecast length
if file is not None:
df = load_table(file.name)
default_length = get_default_forecast_length(file.name)
else:
if not preset_filename or preset_filename == "-- No preset selected --":
return gr.update(choices=[], value=[]), [], gr.update(value=256)
df = load_table(preset_filename)
default_length = get_default_forecast_length(preset_filename)
if df.shape[1] > 0 and df.iloc[:, 0].dtype == object and not df.iloc[:, 0].str.isnumeric().all():
names = df.iloc[:, 0].tolist()
else:
names = [f"Series {i}" for i in range(len(df))]
return (
gr.update(choices=names, value=names),
names,
gr.update(value=default_length)
)
except Exception:
return gr.update(choices=[], value=[]), [], gr.update(value=256)
def filter_names(search_term, all_names):
if not all_names:
return gr.update(choices=[], value=[])
if not search_term:
return gr.update(choices=all_names, value=all_names)
lower = search_term.lower()
filtered = [n for n in all_names if lower in str(n).lower()]
return gr.update(choices=filtered, value=filtered)
def check_all(names_list):
return gr.update(value=names_list)
def uncheck_all(_):
return gr.update(value=[])
def get_default_forecast_length(file_path):
"""Get default forecast length based on filename"""
if file_path is None:
return 64
filename = os.path.basename(file_path)
if filename == "loop.csv" or filename == "ett2.csv":
return 256
elif filename == "air_passangers.csv":
return 48
else:
return 64
def display_filtered_forecast(file, preset_filename, selected_names, forecast_length):
try:
# 1) If no file or preset selected, show an error
if file is None and (preset_filename is None or preset_filename == "-- No preset selected --"):
return None, "No file selected."
# 2) Load DataFrame and remember which filename to pass to model_forecast
if file is not None:
df = load_table(file.name)
file_name = file.name
else:
df = load_table(preset_filename)
file_name = preset_filename
# 3) Determine whether first column is names or numeric
if (
df.shape[1] > 0
and df.iloc[:, 0].dtype == object
and not df.iloc[:, 0].str.isnumeric().all()
):
if df.shape[1]>2048:
df = pd.concat([ df.iloc[:, [0]], df.iloc[:, -2048:] ], axis=1)
gr.Info("Maximum of 2048 steps per timeseries (row) is allowed, hence last 2048 kept. ℹ️", duration=5)
all_names = df.iloc[:, 0].tolist()
data_only_full = df.iloc[:, 1:].astype(float)
else:
if df.shape[1]>2048:
df = df.iloc[:, -2048:]
gr.Info("Maximum of 2048 steps per timeseries (row) is allowed, hence last 2048 kept. ℹ️", duration=5)
all_names = [f"Series {i}" for i in range(len(df))]
data_only_full = df.astype(float)
# ** Cut timeseries into 2 series, context and prediction
if data_only_full.shape[1]<forecast_length+10:
raise gr.Error("Timeseries should have the minimum length of (forecast_length+10)!", duration=5)
y_true = data_only_full.iloc[:, -forecast_length:]
data_only = data_only_full.iloc[:, :-forecast_length]
# 4) Build mask from selected_names
mask = [name in selected_names for name in all_names]
if not any(mask):
return None, "No timeseries chosen to plot."
filtered_data = data_only.iloc[mask, :].values # shape = (n_selected, seq_len)
filtered_data_only_full = data_only_full.iloc[mask, :].values # ** Added to show prediction accuracy
filtered_names = [all_names[i] for i, m in enumerate(mask) if m]
n_selected = filtered_data.shape[0]
if n_selected>30:
raise gr.Error("Maximum of 30 timeseries (rows) is possible to choose", duration=5)
# 5) First call model_forecast on all series, then select only the masked rows
full_data = data_only.values # shape = (n_all, seq_len)
full_out = model_forecast(full_data, forecast_length=forecast_length, file_name=file_name)
# Now pick only the rows we actually filtered
out = full_out[mask, :, :] # shape = (n_selected, pred_len, n_q)
inp = torch.tensor(filtered_data)
inp_full = torch.tensor(filtered_data_only_full) # ** Added to show prediction accuracy
# 6) Create one subplot per selected series, with vertical spacing
subplot_height_px = 350 # px per subplot
n_selected = len(filtered_names)
fig = make_subplots(
rows=n_selected,
cols=1,
shared_xaxes=False,
subplot_titles=filtered_names,
row_heights=[1] * n_selected, # all rows equal height
)
fig.update_layout(
height=subplot_height_px * n_selected,
template="plotly_dark",
margin=dict(t=50, b=50)
)
for idx in range(n_selected):
ts = inp[idx].numpy().tolist()
ts_full = inp_full[idx].numpy().tolist()
qp = out[idx].numpy()
series_name = filtered_names[idx]
# a) plot historical data (blue line)
x_hist = list(range(len(ts_full)))
fig.add_trace(
go.Scatter(
x=x_hist,
y=ts_full,
mode="lines",
name=f"{series_name} – Given Data",
line=dict(color="blue", width=2),
showlegend=False
),
row=idx + 1, col=1
)
# b) compute forecast indices
pred_len = qp.shape[0]
x_pred = list(range(len(ts) - 1, len(ts) - 1 + pred_len))
#x_pred = list(range(len(ts), len(ts) + pred_len))
lower_q = qp[:, 0]
upper_q = qp[:, -1]
n_q = qp.shape[1]
median_idx = n_q // 2
median_q = qp[:, median_idx]
# c) lower‐bound (invisible)
fig.add_trace(
go.Scatter(
x=x_pred,
y=lower_q,
mode="lines",
line=dict(color="rgba(0,0,0,0)", width=0),
name=f"{series_name} – 10% Quantile",
hovertemplate="10% Quantile: %{y:.2f}<extra></extra>",
showlegend=False
),
row=idx + 1, col=1
)
# d) upper‐bound (shaded area)
fig.add_trace(
go.Scatter(
x=x_pred,
y=upper_q,
mode="lines",
line=dict(color="rgba(0,0,0,0)", width=0),
fill="tonexty",
fillcolor="rgba(128,128,128,0.3)",
name=f"{series_name} – 90% Quantile",
hovertemplate="90% Quantile: %{y:.2f}<extra></extra>",
showlegend=False
),
row=idx + 1, col=1
)
# e) median forecast (orange line)
fig.add_trace(
go.Scatter(
x=x_pred,
y=median_q,
mode="lines",
name=f"{series_name} – Median Forecast",
line=dict(color="orange", width=2),
hovertemplate="Median: %{y:.2f}<extra></extra>",
showlegend=False
),
row=idx + 1, col=1
)
# f) label axes for each subplot
fig.update_xaxes(title_text="Time", row=idx + 1, col=1)
fig.update_yaxes(title_text="Value", row=idx + 1, col=1)
# 7) Global layout tweaks
fig.update_layout(
template="plotly_dark",
height=300 * n_selected, # 300px per subplot
title=dict(
text="Forecasts for Selected Timeseries",
x=0.5,
font=dict(size=20, family="Arial", color="white")
),
hovermode="x unified",
margin=dict(t=120, b=40, l=60, r=40),
showlegend=False
)
return fig, ""
except gr.Error as e:
raise gr.Error(e, duration=5)
except Exception as e:
return None, f"Error: {str(e)}"
# ----------------------------
# Gradio layout: two columns + instructions
# ----------------------------
with gr.Blocks(fill_width=True,theme=gr.themes.Ocean()) as demo:
gr.Markdown("# 📈 TiRex - timeseries forecasting 📊")
gr.Markdown("Upload data or choose a preset, filter by name, then click Plot.")
with gr.Row():
# Left column: controls
with gr.Column(scale=1):
gr.Markdown("## Data Selection")
file_input = gr.File(
label="Upload CSV / XLSX / PARQUET",
file_types=[".csv", ".xls", ".xlsx", ".parquet"]
)
preset_choices = ["-- No preset selected --", "data/loop.csv", "data/air_passangers.csv", 'data/ett2.csv']
preset_dropdown = gr.Dropdown(
label="Or choose a preset:",
choices=preset_choices,
value="-- No preset selected --"
)
gr.Markdown("## Forecast Length Setting")
forecast_length_slider = gr.Slider(
minimum=1,
maximum=512,
value=64,
step=1,
label="Forecast Length (Steps)",
info="Choose how many future steps to forecast."
)
gr.Markdown("## Search / Filter")
search_box = gr.Textbox(placeholder="Type to filter (e.g. 'AMZN')")
filter_checkbox = gr.CheckboxGroup(
choices=[], value=[], label="Select which timeseries to show"
)
with gr.Row():
check_all_btn = gr.Button("✅ Check All")
uncheck_all_btn = gr.Button("❎ Uncheck All")
plot_button = gr.Button("▶️ Plot Forecasts")
errbox = gr.Textbox(label="Error Message", interactive=False)
with gr.Row():
gr.Image("static/nxai_logo.png", width=150, show_label=False, container=False)
gr.Image("static/tirex.jpeg", width=150, show_label=False, container=False)
with gr.Column(scale=5):
gr.Markdown("## Forecast Plot")
plot_output = gr.Plot()
# Instruction text below plot
gr.Markdown("## Instructions")
gr.Markdown(
"""
**How to format your data:**
- Your file must be a table (CSV, XLS, XLSX, or Parquet).
- **One row per timeseries.** Each row is treated as a separate series.
- If you want to **name** each series, put the name as the first value in **every** row:
- Example (CSV):
`AAPL, 120.5, 121.0, 119.8, ...`
`AMZN, 3300.0, 3310.5, 3295.2, ...`
- In that case, the first column is not numeric, so it will be used as the series name.
- If you do **not** want named series, simply leave out the first column entirely and have all values numeric:
- Example:
`120.5, 121.0, 119.8, ...`
`3300.0, 3310.5, 3295.2, ...`
- Then every row will be auto-named “Series 0, Series 1, …” in order.
- **Consistency rule:** Either all rows have a non-numeric first entry for the name, or none do. Do not mix.
- The rest of the columns (after the optional name) must be numeric data points for that series.
- You can filter by typing in the search box. Then check or uncheck individual names before plotting.
- Use “Check All” / “Uncheck All” to quickly select or deselect every series.
- Finally, click **Plot Forecasts** to view the quantile forecast for each selected series (for 64 steps ahead).
"""
)
gr.Markdown("## Citation")
# make citation as code block
gr.Markdown(
"""
If you use TiRex in your research, please cite our work:
```
@article{auerTiRexZeroShotForecasting2025,
title = {{{TiRex}}: {{Zero-Shot Forecasting Across Long}} and {{Short Horizons}} with {{Enhanced In-Context Learning}}},
author = {Auer, Andreas and Podest, Patrick and Klotz, Daniel and B{\"o}ck, Sebastian and Klambauer, G{\"u}nter and Hochreiter, Sepp},
journal = {ArXiv},
volume = {2505.23719},
year = {2025}
}
```
"""
)
names_state = gr.State([])
file_input.change(
fn=extract_names_and_update,
inputs=[file_input, preset_dropdown],
outputs=[filter_checkbox, names_state, forecast_length_slider]
)
preset_dropdown.change(
fn=extract_names_and_update,
inputs=[file_input, preset_dropdown],
outputs=[filter_checkbox, names_state, forecast_length_slider]
)
# When search term changes, filter names
search_box.change(
fn=filter_names,
inputs=[search_box, names_state],
outputs=[filter_checkbox]
)
# Check All / Uncheck All
check_all_btn.click(fn=check_all, inputs=names_state, outputs=filter_checkbox)
uncheck_all_btn.click(fn=uncheck_all, inputs=names_state, outputs=filter_checkbox)
# Plot button
plot_button.click(
fn=display_filtered_forecast,
inputs=[file_input, preset_dropdown, filter_checkbox, forecast_length_slider],
outputs=[plot_output, errbox]
)
demo.launch(server_name="0.0.0.0", server_port=7860)
'''
gradio app.py
ssh -L 7860:localhost:7860 nikita_blago@oracle-gpu-controller -t \
ssh -L 7860:localhost:7860 compute-permanent-node-195
'''