Spaces:
Running
on
T4
Running
on
T4
predicting last forecast_length (not tested yet)
Browse files- app.py +21 -106
- data/air_passengers_forecast_48.pt +3 -0
- data/air_passengers_forecast_512.pt +0 -0
- data/ett2_forecast_256.pt +3 -0
- data/ett2_forecast_512.pt +0 -0
- data/loop_forecast_256.pt +3 -0
- data/loop_forecast_512.pt +0 -0
- test.ipynb +0 -0
- test_app.py +0 -39
app.py
CHANGED
@@ -19,116 +19,18 @@ model: ForecastModel = load_model("NX-AI/TiRex",device='cuda')
|
|
19 |
|
20 |
def model_forecast(input_data, forecast_length=256, file_name=None):
|
21 |
if os.path.basename(file_name) == "loop.csv":
|
22 |
-
_forecast_tensor = torch.load("data/
|
23 |
return _forecast_tensor[:,:forecast_length,:]
|
24 |
elif os.path.basename(file_name) == "ett2.csv":
|
25 |
-
_forecast_tensor = torch.load("data/
|
26 |
return _forecast_tensor[:,:forecast_length,:]
|
27 |
elif os.path.basename(file_name) == "air_passangers.csv":
|
28 |
-
_forecast_tensor = torch.load("data/
|
29 |
return _forecast_tensor[:,:forecast_length,:]
|
30 |
else:
|
31 |
forecast = model.forecast(context=input_data, prediction_length=forecast_length)
|
32 |
return forecast[0]
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
def plot_forecast_plotly(timeseries, quantile_predictions, timeseries_name):
|
37 |
-
"""
|
38 |
-
- timeseries: 1D list/array of historical values.
|
39 |
-
- quantile_predictions: 2D array of shape (pred_len, n_q),
|
40 |
-
with quantiles sorted left→right.
|
41 |
-
- timeseries_name: string label.
|
42 |
-
"""
|
43 |
-
fig = go.Figure()
|
44 |
-
|
45 |
-
# 1) Plot historical data (blue line, no markers)
|
46 |
-
x_hist = list(range(len(timeseries)))
|
47 |
-
fig.add_trace(go.Scatter(
|
48 |
-
x=x_hist,
|
49 |
-
y=timeseries,
|
50 |
-
mode="lines", # no markers
|
51 |
-
name=f"{timeseries_name} – Given Data",
|
52 |
-
line=dict(color="blue", width=2),
|
53 |
-
))
|
54 |
-
|
55 |
-
# 2) X-axis indices for forecasts
|
56 |
-
pred_len = quantile_predictions.shape[0]
|
57 |
-
x_pred = list(range(len(timeseries) - 1, len(timeseries) - 1 + pred_len))
|
58 |
-
|
59 |
-
# 3) Extract lower, upper, and median quantiles
|
60 |
-
lower_q = quantile_predictions[:, 0]
|
61 |
-
upper_q = quantile_predictions[:, -1]
|
62 |
-
n_q = quantile_predictions.shape[1]
|
63 |
-
median_idx = n_q // 2
|
64 |
-
median_q = quantile_predictions[:, median_idx]
|
65 |
-
|
66 |
-
# 4) Lower‐bound trace (invisible line, still shows on hover)
|
67 |
-
fig.add_trace(go.Scatter(
|
68 |
-
x=x_pred,
|
69 |
-
y=lower_q,
|
70 |
-
mode="lines",
|
71 |
-
line=dict(color="rgba(0, 0, 0, 0)", width=0),
|
72 |
-
name=f"{timeseries_name} – 10% Quantile",
|
73 |
-
hovertemplate="Lower: %{y:.2f}<extra></extra>"
|
74 |
-
))
|
75 |
-
|
76 |
-
# 5) Upper‐bound trace (shaded down to lower_q)
|
77 |
-
fig.add_trace(go.Scatter(
|
78 |
-
x=x_pred,
|
79 |
-
y=upper_q,
|
80 |
-
mode="lines",
|
81 |
-
line=dict(color="rgba(0, 0, 0, 0)", width=0),
|
82 |
-
fill="tonexty",
|
83 |
-
fillcolor="rgba(128, 128, 128, 0.3)",
|
84 |
-
name=f"{timeseries_name} – 90% Quantile",
|
85 |
-
hovertemplate="Upper: %{y:.2f}<extra></extra>"
|
86 |
-
))
|
87 |
-
|
88 |
-
# 6) Median trace (orange) on top
|
89 |
-
fig.add_trace(go.Scatter(
|
90 |
-
x=x_pred,
|
91 |
-
y=median_q,
|
92 |
-
mode="lines",
|
93 |
-
name=f"{timeseries_name} – Median Forecast",
|
94 |
-
line=dict(color="orange", width=2),
|
95 |
-
hovertemplate="Median: %{y:.2f}<extra></extra>"
|
96 |
-
))
|
97 |
-
|
98 |
-
# 7) Layout: title on left (y=0.95), legend on right (y=0.95)
|
99 |
-
fig.update_layout(
|
100 |
-
template="plotly_dark",
|
101 |
-
title=dict(
|
102 |
-
text=f"Timeseries: {timeseries_name}",
|
103 |
-
x=0.10, # left‐align
|
104 |
-
xanchor="left",
|
105 |
-
y=0.90, # near top
|
106 |
-
yanchor="bottom",
|
107 |
-
font=dict(size=18, family="Arial", color="white")
|
108 |
-
),
|
109 |
-
xaxis=dict(
|
110 |
-
rangeslider=dict(visible=True), # <-- put rangeslider here
|
111 |
-
fixedrange=False
|
112 |
-
),
|
113 |
-
xaxis_title="Time",
|
114 |
-
yaxis_title="Value",
|
115 |
-
hovermode="x unified",
|
116 |
-
margin=dict(
|
117 |
-
t=120, # increase top margin to fit title+legend comfortably
|
118 |
-
b=40,
|
119 |
-
l=60,
|
120 |
-
r=40
|
121 |
-
),
|
122 |
-
# height=plot_height,
|
123 |
-
# width=plot_width,
|
124 |
-
autosize=True,
|
125 |
-
)
|
126 |
-
|
127 |
-
return fig
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
def load_table(file_path):
|
134 |
ext = file_path.split(".")[-1].lower()
|
@@ -225,13 +127,19 @@ def display_filtered_forecast(file, preset_filename, selected_names, forecast_le
|
|
225 |
df = pd.concat([ df.iloc[:, [0]], df.iloc[:, -2048:] ], axis=1)
|
226 |
gr.Info("Maximum of 2048 steps per timeseries (row) is allowed, hence last 2048 kept. ℹ️", duration=5)
|
227 |
all_names = df.iloc[:, 0].tolist()
|
228 |
-
|
229 |
else:
|
230 |
if df.shape[1]>2048:
|
231 |
df = df.iloc[:, -2048:]
|
232 |
gr.Info("Maximum of 2048 steps per timeseries (row) is allowed, hence last 2048 kept. ℹ️", duration=5)
|
233 |
all_names = [f"Series {i}" for i in range(len(df))]
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
# 4) Build mask from selected_names
|
237 |
mask = [name in selected_names for name in all_names]
|
@@ -239,6 +147,8 @@ def display_filtered_forecast(file, preset_filename, selected_names, forecast_le
|
|
239 |
return None, "No timeseries chosen to plot."
|
240 |
|
241 |
filtered_data = data_only.iloc[mask, :].values # shape = (n_selected, seq_len)
|
|
|
|
|
242 |
filtered_names = [all_names[i] for i, m in enumerate(mask) if m]
|
243 |
n_selected = filtered_data.shape[0]
|
244 |
if n_selected>30:
|
@@ -251,6 +161,7 @@ def display_filtered_forecast(file, preset_filename, selected_names, forecast_le
|
|
251 |
# Now pick only the rows we actually filtered
|
252 |
out = full_out[mask, :, :] # shape = (n_selected, pred_len, n_q)
|
253 |
inp = torch.tensor(filtered_data)
|
|
|
254 |
|
255 |
# 6) Create one subplot per selected series, with vertical spacing
|
256 |
subplot_height_px = 350 # px per subplot
|
@@ -270,15 +181,16 @@ def display_filtered_forecast(file, preset_filename, selected_names, forecast_le
|
|
270 |
|
271 |
for idx in range(n_selected):
|
272 |
ts = inp[idx].numpy().tolist()
|
|
|
273 |
qp = out[idx].numpy()
|
274 |
series_name = filtered_names[idx]
|
275 |
|
276 |
# a) plot historical data (blue line)
|
277 |
-
x_hist = list(range(len(
|
278 |
fig.add_trace(
|
279 |
go.Scatter(
|
280 |
x=x_hist,
|
281 |
-
y=
|
282 |
mode="lines",
|
283 |
name=f"{series_name} – Given Data",
|
284 |
line=dict(color="blue", width=2),
|
@@ -290,6 +202,8 @@ def display_filtered_forecast(file, preset_filename, selected_names, forecast_le
|
|
290 |
# b) compute forecast indices
|
291 |
pred_len = qp.shape[0]
|
292 |
x_pred = list(range(len(ts) - 1, len(ts) - 1 + pred_len))
|
|
|
|
|
293 |
|
294 |
lower_q = qp[:, 0]
|
295 |
upper_q = qp[:, -1]
|
@@ -340,6 +254,7 @@ def display_filtered_forecast(file, preset_filename, selected_names, forecast_le
|
|
340 |
),
|
341 |
row=idx + 1, col=1
|
342 |
)
|
|
|
343 |
|
344 |
# f) label axes for each subplot
|
345 |
fig.update_xaxes(title_text="Time", row=idx + 1, col=1)
|
@@ -498,5 +413,5 @@ with gr.Blocks(fill_width=True,theme=gr.themes.Ocean()) as demo:
|
|
498 |
'''
|
499 |
gradio app.py
|
500 |
ssh -L 7860:localhost:7860 nikita_blago@oracle-gpu-controller -t \
|
501 |
-
ssh -L 7860:localhost:7860 compute-permanent-node-
|
502 |
'''
|
|
|
19 |
|
20 |
def model_forecast(input_data, forecast_length=256, file_name=None):
|
21 |
if os.path.basename(file_name) == "loop.csv":
|
22 |
+
_forecast_tensor = torch.load("data/loop_forecast_256.pt")
|
23 |
return _forecast_tensor[:,:forecast_length,:]
|
24 |
elif os.path.basename(file_name) == "ett2.csv":
|
25 |
+
_forecast_tensor = torch.load("data/ett2_forecast_256.pt")
|
26 |
return _forecast_tensor[:,:forecast_length,:]
|
27 |
elif os.path.basename(file_name) == "air_passangers.csv":
|
28 |
+
_forecast_tensor = torch.load("data/air_passengers_forecast_48.pt")
|
29 |
return _forecast_tensor[:,:forecast_length,:]
|
30 |
else:
|
31 |
forecast = model.forecast(context=input_data, prediction_length=forecast_length)
|
32 |
return forecast[0]
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def load_table(file_path):
|
36 |
ext = file_path.split(".")[-1].lower()
|
|
|
127 |
df = pd.concat([ df.iloc[:, [0]], df.iloc[:, -2048:] ], axis=1)
|
128 |
gr.Info("Maximum of 2048 steps per timeseries (row) is allowed, hence last 2048 kept. ℹ️", duration=5)
|
129 |
all_names = df.iloc[:, 0].tolist()
|
130 |
+
data_only_full = df.iloc[:, 1:].astype(float)
|
131 |
else:
|
132 |
if df.shape[1]>2048:
|
133 |
df = df.iloc[:, -2048:]
|
134 |
gr.Info("Maximum of 2048 steps per timeseries (row) is allowed, hence last 2048 kept. ℹ️", duration=5)
|
135 |
all_names = [f"Series {i}" for i in range(len(df))]
|
136 |
+
data_only_full = df.astype(float)
|
137 |
+
|
138 |
+
# ** Cut timeseries into 2 series, context and prediction
|
139 |
+
if data_only_full.shape[1]<forecast_length+10:
|
140 |
+
raise gr.Error("Timeseries should have the minimum length of (forecast_length+10)!", duration=5)
|
141 |
+
y_true = data_only_full.iloc[:, -forecast_length:]
|
142 |
+
data_only = data_only_full.iloc[:, :-forecast_length]
|
143 |
|
144 |
# 4) Build mask from selected_names
|
145 |
mask = [name in selected_names for name in all_names]
|
|
|
147 |
return None, "No timeseries chosen to plot."
|
148 |
|
149 |
filtered_data = data_only.iloc[mask, :].values # shape = (n_selected, seq_len)
|
150 |
+
filtered_data_only_full = data_only_full.iloc[mask, :].values # ** Added to show prediction accuracy
|
151 |
+
|
152 |
filtered_names = [all_names[i] for i, m in enumerate(mask) if m]
|
153 |
n_selected = filtered_data.shape[0]
|
154 |
if n_selected>30:
|
|
|
161 |
# Now pick only the rows we actually filtered
|
162 |
out = full_out[mask, :, :] # shape = (n_selected, pred_len, n_q)
|
163 |
inp = torch.tensor(filtered_data)
|
164 |
+
inp_full = torch.tensor(filtered_data_only_full) # ** Added to show prediction accuracy
|
165 |
|
166 |
# 6) Create one subplot per selected series, with vertical spacing
|
167 |
subplot_height_px = 350 # px per subplot
|
|
|
181 |
|
182 |
for idx in range(n_selected):
|
183 |
ts = inp[idx].numpy().tolist()
|
184 |
+
ts_full = inp_full[idx].numpy().tolist()
|
185 |
qp = out[idx].numpy()
|
186 |
series_name = filtered_names[idx]
|
187 |
|
188 |
# a) plot historical data (blue line)
|
189 |
+
x_hist = list(range(len(ts_full)))
|
190 |
fig.add_trace(
|
191 |
go.Scatter(
|
192 |
x=x_hist,
|
193 |
+
y=ts_full,
|
194 |
mode="lines",
|
195 |
name=f"{series_name} – Given Data",
|
196 |
line=dict(color="blue", width=2),
|
|
|
202 |
# b) compute forecast indices
|
203 |
pred_len = qp.shape[0]
|
204 |
x_pred = list(range(len(ts) - 1, len(ts) - 1 + pred_len))
|
205 |
+
#x_pred = list(range(len(ts), len(ts) + pred_len))
|
206 |
+
|
207 |
|
208 |
lower_q = qp[:, 0]
|
209 |
upper_q = qp[:, -1]
|
|
|
254 |
),
|
255 |
row=idx + 1, col=1
|
256 |
)
|
257 |
+
|
258 |
|
259 |
# f) label axes for each subplot
|
260 |
fig.update_xaxes(title_text="Time", row=idx + 1, col=1)
|
|
|
413 |
'''
|
414 |
gradio app.py
|
415 |
ssh -L 7860:localhost:7860 nikita_blago@oracle-gpu-controller -t \
|
416 |
+
ssh -L 7860:localhost:7860 compute-permanent-node-368
|
417 |
'''
|
data/air_passengers_forecast_48.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fd1d2ebfd39d5025f04b97c40469b4fff7a0ee5577a090cb854acaa69c36e9c
|
3 |
+
size 3067
|
data/air_passengers_forecast_512.pt
DELETED
Binary file (19.8 kB)
|
|
data/ett2_forecast_256.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:925cded1905836344ca55b2c2e1d7ac1ab06cd871dd39fe6228bb92652229d14
|
3 |
+
size 19662
|
data/ett2_forecast_512.pt
DELETED
Binary file (38.1 kB)
|
|
data/loop_forecast_256.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33aa603d5d34a87b8801242419c831980e95276e2226c00154c00ba09c2cb1d4
|
3 |
+
size 19662
|
data/loop_forecast_512.pt
DELETED
Binary file (38.1 kB)
|
|
test.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
test_app.py
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import time # Import time to make logs more distinct
|
3 |
-
|
4 |
-
def greet(name):
|
5 |
-
"""
|
6 |
-
This function takes a name as input and returns a personalized greeting string.
|
7 |
-
It now includes print statements for logging with flush=True to ensure
|
8 |
-
logs appear immediately in container environments like Hugging Face Spaces.
|
9 |
-
"""
|
10 |
-
# Log the function entry
|
11 |
-
# The flush=True argument is crucial for logs to appear in real-time in Docker.
|
12 |
-
print(f"[{time.ctime()}] - Function 'greet' was called.", flush=True)
|
13 |
-
|
14 |
-
if name:
|
15 |
-
# Log the received input
|
16 |
-
print(f"[{time.ctime()}] - Received input name: '{name}'", flush=True)
|
17 |
-
return f"Hello, {name}! Welcome to your first Gradio app."
|
18 |
-
else:
|
19 |
-
# Log that the input was empty
|
20 |
-
print(f"[{time.ctime()}] - No input name received.", flush=True)
|
21 |
-
return "Hello! Please enter your name."
|
22 |
-
|
23 |
-
# Create the Gradio interface
|
24 |
-
app = gr.Interface(
|
25 |
-
fn=greet,
|
26 |
-
inputs=gr.Textbox(
|
27 |
-
lines=1,
|
28 |
-
placeholder="Please enter your name here...",
|
29 |
-
label="Your Name"
|
30 |
-
),
|
31 |
-
outputs=gr.Text(label="Greeting"),
|
32 |
-
title="Simple Greeting App with Logging",
|
33 |
-
description="Enter your name to receive a greeting. Check the Hugging Face logs to see the output from the print() statements."
|
34 |
-
)
|
35 |
-
|
36 |
-
# Launch the application
|
37 |
-
if __name__ == "__main__":
|
38 |
-
print(f"[{time.ctime()}] - Starting Gradio server...", flush=True)
|
39 |
-
app.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|