Spaces:
Running
on
T4
Running
on
T4
Nikita
commited on
Commit
·
fc8f543
1
Parent(s):
de2de2d
trying real app.py
Browse files- app.py +493 -32
- orig_app.py +0 -500
- test_app.py +39 -0
app.py
CHANGED
@@ -1,39 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"""
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
9 |
"""
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
else:
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
# Launch the application
|
37 |
-
if __name__ == "__main__":
|
38 |
-
print(f"[{time.ctime()}] - Starting Gradio server...", flush=True)
|
39 |
-
app.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
+
import io
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
import gradio as gr
|
8 |
+
import os
|
9 |
+
from plotly.subplots import make_subplots
|
10 |
|
11 |
+
from tirex import load_model, ForecastModel
|
12 |
+
|
13 |
+
# ----------------------------
|
14 |
+
# Helper functions (logic mostly unchanged)
|
15 |
+
# ----------------------------
|
16 |
+
|
17 |
+
torch.manual_seed(42)
|
18 |
+
model: ForecastModel = load_model("NX-AI/TiRex",device='cuda')
|
19 |
+
|
20 |
+
def model_forecast(input_data, forecast_length=256, file_name=None):
|
21 |
+
if os.path.basename(file_name) == "loop.csv":
|
22 |
+
_forecast_tensor = torch.load("data/loop_forecast_512.pt")
|
23 |
+
return _forecast_tensor[:,:forecast_length,:]
|
24 |
+
elif os.path.basename(file_name) == "ett2.csv":
|
25 |
+
_forecast_tensor = torch.load("data/ett2_forecast_512.pt")
|
26 |
+
return _forecast_tensor[:,:forecast_length,:]
|
27 |
+
elif os.path.basename(file_name) == "air_passangers.csv":
|
28 |
+
_forecast_tensor = torch.load("data/air_passengers_forecast_512.pt")
|
29 |
+
return _forecast_tensor[:,:forecast_length,:]
|
30 |
+
else:
|
31 |
+
forecast = model.forecast(context=input_data, prediction_length=forecast_length)
|
32 |
+
return forecast[0]
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
def plot_forecast_plotly(timeseries, quantile_predictions, timeseries_name):
|
37 |
"""
|
38 |
+
- timeseries: 1D list/array of historical values.
|
39 |
+
- quantile_predictions: 2D array of shape (pred_len, n_q),
|
40 |
+
with quantiles sorted left→right.
|
41 |
+
- timeseries_name: string label.
|
42 |
"""
|
43 |
+
fig = go.Figure()
|
44 |
+
|
45 |
+
# 1) Plot historical data (blue line, no markers)
|
46 |
+
x_hist = list(range(len(timeseries)))
|
47 |
+
fig.add_trace(go.Scatter(
|
48 |
+
x=x_hist,
|
49 |
+
y=timeseries,
|
50 |
+
mode="lines", # no markers
|
51 |
+
name=f"{timeseries_name} – Given Data",
|
52 |
+
line=dict(color="blue", width=2),
|
53 |
+
))
|
54 |
+
|
55 |
+
# 2) X-axis indices for forecasts
|
56 |
+
pred_len = quantile_predictions.shape[0]
|
57 |
+
x_pred = list(range(len(timeseries) - 1, len(timeseries) - 1 + pred_len))
|
58 |
+
|
59 |
+
# 3) Extract lower, upper, and median quantiles
|
60 |
+
lower_q = quantile_predictions[:, 0]
|
61 |
+
upper_q = quantile_predictions[:, -1]
|
62 |
+
n_q = quantile_predictions.shape[1]
|
63 |
+
median_idx = n_q // 2
|
64 |
+
median_q = quantile_predictions[:, median_idx]
|
65 |
+
|
66 |
+
# 4) Lower‐bound trace (invisible line, still shows on hover)
|
67 |
+
fig.add_trace(go.Scatter(
|
68 |
+
x=x_pred,
|
69 |
+
y=lower_q,
|
70 |
+
mode="lines",
|
71 |
+
line=dict(color="rgba(0, 0, 0, 0)", width=0),
|
72 |
+
name=f"{timeseries_name} – 10% Quantile",
|
73 |
+
hovertemplate="Lower: %{y:.2f}<extra></extra>"
|
74 |
+
))
|
75 |
+
|
76 |
+
# 5) Upper‐bound trace (shaded down to lower_q)
|
77 |
+
fig.add_trace(go.Scatter(
|
78 |
+
x=x_pred,
|
79 |
+
y=upper_q,
|
80 |
+
mode="lines",
|
81 |
+
line=dict(color="rgba(0, 0, 0, 0)", width=0),
|
82 |
+
fill="tonexty",
|
83 |
+
fillcolor="rgba(128, 128, 128, 0.3)",
|
84 |
+
name=f"{timeseries_name} – 90% Quantile",
|
85 |
+
hovertemplate="Upper: %{y:.2f}<extra></extra>"
|
86 |
+
))
|
87 |
+
|
88 |
+
# 6) Median trace (orange) on top
|
89 |
+
fig.add_trace(go.Scatter(
|
90 |
+
x=x_pred,
|
91 |
+
y=median_q,
|
92 |
+
mode="lines",
|
93 |
+
name=f"{timeseries_name} – Median Forecast",
|
94 |
+
line=dict(color="orange", width=2),
|
95 |
+
hovertemplate="Median: %{y:.2f}<extra></extra>"
|
96 |
+
))
|
97 |
+
|
98 |
+
# 7) Layout: title on left (y=0.95), legend on right (y=0.95)
|
99 |
+
fig.update_layout(
|
100 |
+
template="plotly_dark",
|
101 |
+
title=dict(
|
102 |
+
text=f"Timeseries: {timeseries_name}",
|
103 |
+
x=0.10, # left‐align
|
104 |
+
xanchor="left",
|
105 |
+
y=0.90, # near top
|
106 |
+
yanchor="bottom",
|
107 |
+
font=dict(size=18, family="Arial", color="white")
|
108 |
+
),
|
109 |
+
xaxis=dict(
|
110 |
+
rangeslider=dict(visible=True), # <-- put rangeslider here
|
111 |
+
fixedrange=False
|
112 |
+
),
|
113 |
+
xaxis_title="Time",
|
114 |
+
yaxis_title="Value",
|
115 |
+
hovermode="x unified",
|
116 |
+
margin=dict(
|
117 |
+
t=120, # increase top margin to fit title+legend comfortably
|
118 |
+
b=40,
|
119 |
+
l=60,
|
120 |
+
r=40
|
121 |
+
),
|
122 |
+
# height=plot_height,
|
123 |
+
# width=plot_width,
|
124 |
+
autosize=True,
|
125 |
+
)
|
126 |
+
|
127 |
+
return fig
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
def load_table(file_path):
|
134 |
+
ext = file_path.split(".")[-1].lower()
|
135 |
+
if ext == "csv":
|
136 |
+
return pd.read_csv(file_path)
|
137 |
+
elif ext in ("xls", "xlsx"):
|
138 |
+
return pd.read_excel(file_path)
|
139 |
+
elif ext == "parquet":
|
140 |
+
return pd.read_parquet(file_path)
|
141 |
else:
|
142 |
+
raise ValueError("Unsupported format. Use CSV, XLS, XLSX, or PARQUET.")
|
143 |
+
|
144 |
+
|
145 |
+
def extract_names_and_update(file, preset_filename):
|
146 |
+
try:
|
147 |
+
# Determine which file to use and get default forecast length
|
148 |
+
if file is not None:
|
149 |
+
df = load_table(file.name)
|
150 |
+
default_length = get_default_forecast_length(file.name)
|
151 |
+
else:
|
152 |
+
if not preset_filename or preset_filename == "-- No preset selected --":
|
153 |
+
return gr.update(choices=[], value=[]), [], gr.update(value=256)
|
154 |
+
df = load_table(preset_filename)
|
155 |
+
default_length = get_default_forecast_length(preset_filename)
|
156 |
+
|
157 |
+
if df.shape[1] > 0 and df.iloc[:, 0].dtype == object and not df.iloc[:, 0].str.isnumeric().all():
|
158 |
+
names = df.iloc[:, 0].tolist()
|
159 |
+
else:
|
160 |
+
names = [f"Series {i}" for i in range(len(df))]
|
161 |
+
|
162 |
+
return (
|
163 |
+
gr.update(choices=names, value=names),
|
164 |
+
names,
|
165 |
+
gr.update(value=default_length)
|
166 |
+
)
|
167 |
+
except Exception:
|
168 |
+
return gr.update(choices=[], value=[]), [], gr.update(value=256)
|
169 |
+
|
170 |
+
|
171 |
+
def filter_names(search_term, all_names):
|
172 |
+
if not all_names:
|
173 |
+
return gr.update(choices=[], value=[])
|
174 |
+
if not search_term:
|
175 |
+
return gr.update(choices=all_names, value=all_names)
|
176 |
+
lower = search_term.lower()
|
177 |
+
filtered = [n for n in all_names if lower in str(n).lower()]
|
178 |
+
return gr.update(choices=filtered, value=filtered)
|
179 |
+
|
180 |
+
|
181 |
+
def check_all(names_list):
|
182 |
+
return gr.update(value=names_list)
|
183 |
+
|
184 |
+
|
185 |
+
def uncheck_all(_):
|
186 |
+
return gr.update(value=[])
|
187 |
+
|
188 |
+
def get_default_forecast_length(file_path):
|
189 |
+
"""Get default forecast length based on filename"""
|
190 |
+
if file_path is None:
|
191 |
+
return 64
|
192 |
+
|
193 |
+
filename = os.path.basename(file_path)
|
194 |
+
if filename == "loop.csv" or filename == "ett2.csv":
|
195 |
+
return 256
|
196 |
+
elif filename == "air_passangers.csv":
|
197 |
+
return 48
|
198 |
+
else:
|
199 |
+
return 64
|
200 |
+
|
201 |
+
|
202 |
+
def display_filtered_forecast(file, preset_filename, selected_names, forecast_length):
|
203 |
+
try:
|
204 |
+
# 1) If no file or preset selected, show an error
|
205 |
+
if file is None and (preset_filename is None or preset_filename == "-- No preset selected --"):
|
206 |
+
return None, "No file selected."
|
207 |
+
|
208 |
+
# 2) Load DataFrame and remember which filename to pass to model_forecast
|
209 |
+
if file is not None:
|
210 |
+
df = load_table(file.name)
|
211 |
+
file_name = file.name
|
212 |
+
else:
|
213 |
+
df = load_table(preset_filename)
|
214 |
+
file_name = preset_filename
|
215 |
+
|
216 |
+
if df.shape[1]>2048:
|
217 |
+
df = df.iloc[:,-2048:]
|
218 |
+
gr.Info("Maximum of 2048 steps per timeseries (row) is allowed, hence last 2048 kept. ℹ️", duration=5)
|
219 |
+
|
220 |
+
|
221 |
+
# 3) Determine whether first column is names or numeric
|
222 |
+
if (
|
223 |
+
df.shape[1] > 0
|
224 |
+
and df.iloc[:, 0].dtype == object
|
225 |
+
and not df.iloc[:, 0].str.isnumeric().all()
|
226 |
+
):
|
227 |
+
all_names = df.iloc[:, 0].tolist()
|
228 |
+
data_only = df.iloc[:, 1:].astype(float)
|
229 |
+
else:
|
230 |
+
all_names = [f"Series {i}" for i in range(len(df))]
|
231 |
+
data_only = df.astype(float)
|
232 |
+
|
233 |
+
# 4) Build mask from selected_names
|
234 |
+
mask = [name in selected_names for name in all_names]
|
235 |
+
if not any(mask):
|
236 |
+
return None, "No timeseries chosen to plot."
|
237 |
+
|
238 |
+
filtered_data = data_only.iloc[mask, :].values # shape = (n_selected, seq_len)
|
239 |
+
filtered_names = [all_names[i] for i, m in enumerate(mask) if m]
|
240 |
+
n_selected = filtered_data.shape[0]
|
241 |
+
if n_selected>30:
|
242 |
+
raise gr.Error("Maximum of 30 timeseries (rows) is possible to choose", duration=5)
|
243 |
+
|
244 |
+
# 5) First call model_forecast on all series, then select only the masked rows
|
245 |
+
full_data = data_only.values # shape = (n_all, seq_len)
|
246 |
+
full_out = model_forecast(full_data, forecast_length=forecast_length, file_name=file_name)
|
247 |
+
|
248 |
+
# Now pick only the rows we actually filtered
|
249 |
+
out = full_out[mask, :, :] # shape = (n_selected, pred_len, n_q)
|
250 |
+
inp = torch.tensor(filtered_data)
|
251 |
+
|
252 |
+
# 6) Create one subplot per selected series, with vertical spacing
|
253 |
+
subplot_height_px = 350 # px per subplot
|
254 |
+
n_selected = len(filtered_names)
|
255 |
+
fig = make_subplots(
|
256 |
+
rows=n_selected,
|
257 |
+
cols=1,
|
258 |
+
shared_xaxes=False,
|
259 |
+
subplot_titles=filtered_names,
|
260 |
+
row_heights=[1] * n_selected, # all rows equal height
|
261 |
+
)
|
262 |
+
fig.update_layout(
|
263 |
+
height=subplot_height_px * n_selected,
|
264 |
+
template="plotly_dark",
|
265 |
+
margin=dict(t=50, b=50)
|
266 |
+
)
|
267 |
+
|
268 |
+
for idx in range(n_selected):
|
269 |
+
ts = inp[idx].numpy().tolist()
|
270 |
+
qp = out[idx].numpy()
|
271 |
+
series_name = filtered_names[idx]
|
272 |
+
|
273 |
+
# a) plot historical data (blue line)
|
274 |
+
x_hist = list(range(len(ts)))
|
275 |
+
fig.add_trace(
|
276 |
+
go.Scatter(
|
277 |
+
x=x_hist,
|
278 |
+
y=ts,
|
279 |
+
mode="lines",
|
280 |
+
name=f"{series_name} – Given Data",
|
281 |
+
line=dict(color="blue", width=2),
|
282 |
+
showlegend=False
|
283 |
+
),
|
284 |
+
row=idx + 1, col=1
|
285 |
+
)
|
286 |
+
|
287 |
+
# b) compute forecast indices
|
288 |
+
pred_len = qp.shape[0]
|
289 |
+
x_pred = list(range(len(ts) - 1, len(ts) - 1 + pred_len))
|
290 |
+
|
291 |
+
lower_q = qp[:, 0]
|
292 |
+
upper_q = qp[:, -1]
|
293 |
+
n_q = qp.shape[1]
|
294 |
+
median_idx = n_q // 2
|
295 |
+
median_q = qp[:, median_idx]
|
296 |
+
|
297 |
+
# c) lower‐bound (invisible)
|
298 |
+
fig.add_trace(
|
299 |
+
go.Scatter(
|
300 |
+
x=x_pred,
|
301 |
+
y=lower_q,
|
302 |
+
mode="lines",
|
303 |
+
line=dict(color="rgba(0,0,0,0)", width=0),
|
304 |
+
name=f"{series_name} – 10% Quantile",
|
305 |
+
hovertemplate="10% Quantile: %{y:.2f}<extra></extra>",
|
306 |
+
showlegend=False
|
307 |
+
),
|
308 |
+
row=idx + 1, col=1
|
309 |
+
)
|
310 |
+
|
311 |
+
# d) upper‐bound (shaded area)
|
312 |
+
fig.add_trace(
|
313 |
+
go.Scatter(
|
314 |
+
x=x_pred,
|
315 |
+
y=upper_q,
|
316 |
+
mode="lines",
|
317 |
+
line=dict(color="rgba(0,0,0,0)", width=0),
|
318 |
+
fill="tonexty",
|
319 |
+
fillcolor="rgba(128,128,128,0.3)",
|
320 |
+
name=f"{series_name} – 90% Quantile",
|
321 |
+
hovertemplate="90% Quantile: %{y:.2f}<extra></extra>",
|
322 |
+
showlegend=False
|
323 |
+
),
|
324 |
+
row=idx + 1, col=1
|
325 |
+
)
|
326 |
+
|
327 |
+
# e) median forecast (orange line)
|
328 |
+
fig.add_trace(
|
329 |
+
go.Scatter(
|
330 |
+
x=x_pred,
|
331 |
+
y=median_q,
|
332 |
+
mode="lines",
|
333 |
+
name=f"{series_name} – Median Forecast",
|
334 |
+
line=dict(color="orange", width=2),
|
335 |
+
hovertemplate="Median: %{y:.2f}<extra></extra>",
|
336 |
+
showlegend=False
|
337 |
+
),
|
338 |
+
row=idx + 1, col=1
|
339 |
+
)
|
340 |
+
|
341 |
+
# f) label axes for each subplot
|
342 |
+
fig.update_xaxes(title_text="Time", row=idx + 1, col=1)
|
343 |
+
fig.update_yaxes(title_text="Value", row=idx + 1, col=1)
|
344 |
+
|
345 |
+
# 7) Global layout tweaks
|
346 |
+
fig.update_layout(
|
347 |
+
template="plotly_dark",
|
348 |
+
height=300 * n_selected, # 300px per subplot
|
349 |
+
title=dict(
|
350 |
+
text="Forecasts for Selected Timeseries",
|
351 |
+
x=0.5,
|
352 |
+
font=dict(size=20, family="Arial", color="white")
|
353 |
+
),
|
354 |
+
hovermode="x unified",
|
355 |
+
margin=dict(t=120, b=40, l=60, r=40),
|
356 |
+
showlegend=False
|
357 |
+
)
|
358 |
+
|
359 |
+
return fig, ""
|
360 |
+
except gr.Error as e:
|
361 |
+
raise gr.Error(e, duration=5)
|
362 |
+
|
363 |
+
except Exception as e:
|
364 |
+
return None, f"Error: {str(e)}"
|
365 |
+
|
366 |
+
|
367 |
+
|
368 |
+
# ----------------------------
|
369 |
+
# Gradio layout: two columns + instructions
|
370 |
+
# ----------------------------
|
371 |
+
|
372 |
+
with gr.Blocks(fill_width=True,theme=gr.themes.Ocean()) as demo:
|
373 |
+
gr.Markdown("# 📈 TiRex - timeseries forecasting 📊")
|
374 |
+
gr.Markdown("Upload data or choose a preset, filter by name, then click Plot.")
|
375 |
+
|
376 |
+
with gr.Row():
|
377 |
+
# Left column: controls
|
378 |
+
with gr.Column(scale=1):
|
379 |
+
gr.Markdown("## Data Selection")
|
380 |
+
file_input = gr.File(
|
381 |
+
label="Upload CSV / XLSX / PARQUET",
|
382 |
+
file_types=[".csv", ".xls", ".xlsx", ".parquet"]
|
383 |
+
)
|
384 |
+
preset_choices = ["-- No preset selected --", "data/loop.csv", "data/air_passangers.csv", 'data/ett2.csv']
|
385 |
+
|
386 |
+
preset_dropdown = gr.Dropdown(
|
387 |
+
label="Or choose a preset:",
|
388 |
+
choices=preset_choices,
|
389 |
+
value="-- No preset selected --"
|
390 |
+
)
|
391 |
+
|
392 |
+
gr.Markdown("## Forecast Length Setting")
|
393 |
+
forecast_length_slider = gr.Slider(
|
394 |
+
minimum=1,
|
395 |
+
maximum=512,
|
396 |
+
value=64,
|
397 |
+
step=1,
|
398 |
+
label="Forecast Length (Steps)",
|
399 |
+
info="Choose how many future steps to forecast."
|
400 |
+
)
|
401 |
+
|
402 |
+
gr.Markdown("## Search / Filter")
|
403 |
+
search_box = gr.Textbox(placeholder="Type to filter (e.g. 'AMZN')")
|
404 |
+
filter_checkbox = gr.CheckboxGroup(
|
405 |
+
choices=[], value=[], label="Select which timeseries to show"
|
406 |
+
)
|
407 |
+
|
408 |
+
with gr.Row():
|
409 |
+
check_all_btn = gr.Button("✅ Check All")
|
410 |
+
uncheck_all_btn = gr.Button("❎ Uncheck All")
|
411 |
+
|
412 |
+
plot_button = gr.Button("▶️ Plot Forecasts")
|
413 |
+
errbox = gr.Textbox(label="Error Message", interactive=False)
|
414 |
+
with gr.Row():
|
415 |
+
gr.Image("static/nxai_logo.png", width=150, show_label=False, container=False)
|
416 |
+
gr.Image("static/tirex.jpeg", width=150, show_label=False, container=False)
|
417 |
+
|
418 |
+
with gr.Column(scale=5):
|
419 |
+
gr.Markdown("## Forecast Plot")
|
420 |
+
plot_output = gr.Plot()
|
421 |
+
|
422 |
+
# Instruction text below plot
|
423 |
+
gr.Markdown("## Instructions")
|
424 |
+
gr.Markdown(
|
425 |
+
"""
|
426 |
+
**How to format your data:**
|
427 |
+
- Your file must be a table (CSV, XLS, XLSX, or Parquet).
|
428 |
+
- **One row per timeseries.** Each row is treated as a separate series.
|
429 |
+
- If you want to **name** each series, put the name as the first value in **every** row:
|
430 |
+
- Example (CSV):
|
431 |
+
`AAPL, 120.5, 121.0, 119.8, ...`
|
432 |
+
`AMZN, 3300.0, 3310.5, 3295.2, ...`
|
433 |
+
- In that case, the first column is not numeric, so it will be used as the series name.
|
434 |
+
- If you do **not** want named series, simply leave out the first column entirely and have all values numeric:
|
435 |
+
- Example:
|
436 |
+
`120.5, 121.0, 119.8, ...`
|
437 |
+
`3300.0, 3310.5, 3295.2, ...`
|
438 |
+
- Then every row will be auto-named “Series 0, Series 1, …” in order.
|
439 |
+
- **Consistency rule:** Either all rows have a non-numeric first entry for the name, or none do. Do not mix.
|
440 |
+
- The rest of the columns (after the optional name) must be numeric data points for that series.
|
441 |
+
- You can filter by typing in the search box. Then check or uncheck individual names before plotting.
|
442 |
+
- Use “Check All” / “Uncheck All” to quickly select or deselect every series.
|
443 |
+
- Finally, click **Plot Forecasts** to view the quantile forecast for each selected series (for 64 steps ahead).
|
444 |
+
"""
|
445 |
+
)
|
446 |
+
gr.Markdown("## Citation")
|
447 |
+
# make citation as code block
|
448 |
+
gr.Markdown(
|
449 |
+
"""
|
450 |
+
If you use TiRex in your research, please cite our work:
|
451 |
+
```
|
452 |
+
@article{auerTiRexZeroShotForecasting2025,
|
453 |
+
title = {{{TiRex}}: {{Zero-Shot Forecasting Across Long}} and {{Short Horizons}} with {{Enhanced In-Context Learning}}},
|
454 |
+
author = {Auer, Andreas and Podest, Patrick and Klotz, Daniel and B{\"o}ck, Sebastian and Klambauer, G{\"u}nter and Hochreiter, Sepp},
|
455 |
+
journal = {ArXiv},
|
456 |
+
volume = {2505.23719},
|
457 |
+
year = {2025}
|
458 |
+
}
|
459 |
+
```
|
460 |
+
"""
|
461 |
+
)
|
462 |
+
|
463 |
+
names_state = gr.State([])
|
464 |
+
file_input.change(
|
465 |
+
fn=extract_names_and_update,
|
466 |
+
inputs=[file_input, preset_dropdown],
|
467 |
+
outputs=[filter_checkbox, names_state, forecast_length_slider]
|
468 |
+
)
|
469 |
+
preset_dropdown.change(
|
470 |
+
fn=extract_names_and_update,
|
471 |
+
inputs=[file_input, preset_dropdown],
|
472 |
+
outputs=[filter_checkbox, names_state, forecast_length_slider]
|
473 |
+
)
|
474 |
+
|
475 |
+
# When search term changes, filter names
|
476 |
+
search_box.change(
|
477 |
+
fn=filter_names,
|
478 |
+
inputs=[search_box, names_state],
|
479 |
+
outputs=[filter_checkbox]
|
480 |
+
)
|
481 |
+
|
482 |
+
# Check All / Uncheck All
|
483 |
+
check_all_btn.click(fn=check_all, inputs=names_state, outputs=filter_checkbox)
|
484 |
+
uncheck_all_btn.click(fn=uncheck_all, inputs=names_state, outputs=filter_checkbox)
|
485 |
+
|
486 |
+
# Plot button
|
487 |
+
plot_button.click(
|
488 |
+
fn=display_filtered_forecast,
|
489 |
+
inputs=[file_input, preset_dropdown, filter_checkbox, forecast_length_slider],
|
490 |
+
outputs=[plot_output, errbox]
|
491 |
)
|
492 |
+
demo.launch()
|
493 |
+
|
494 |
+
|
495 |
+
'''
|
496 |
+
gradio app.py
|
497 |
+
ssh -L 7860:localhost:7860 nikita_blago@oracle-gpu-controller -t \
|
498 |
+
ssh -L 7860:localhost:7860 compute-permanent-node-83
|
499 |
+
'''
|
500 |
|
|
|
|
|
|
|
|
orig_app.py
DELETED
@@ -1,500 +0,0 @@
|
|
1 |
-
import io
|
2 |
-
import pandas as pd
|
3 |
-
import torch
|
4 |
-
import plotly.graph_objects as go
|
5 |
-
from PIL import Image
|
6 |
-
import numpy as np
|
7 |
-
import gradio as gr
|
8 |
-
import os
|
9 |
-
from plotly.subplots import make_subplots
|
10 |
-
|
11 |
-
from tirex import load_model, ForecastModel
|
12 |
-
|
13 |
-
# ----------------------------
|
14 |
-
# Helper functions (logic mostly unchanged)
|
15 |
-
# ----------------------------
|
16 |
-
|
17 |
-
torch.manual_seed(42)
|
18 |
-
model: ForecastModel = load_model("NX-AI/TiRex",device='cuda')
|
19 |
-
|
20 |
-
def model_forecast(input_data, forecast_length=256, file_name=None):
|
21 |
-
if os.path.basename(file_name) == "loop.csv":
|
22 |
-
_forecast_tensor = torch.load("data/loop_forecast_512.pt")
|
23 |
-
return _forecast_tensor[:,:forecast_length,:]
|
24 |
-
elif os.path.basename(file_name) == "ett2.csv":
|
25 |
-
_forecast_tensor = torch.load("data/ett2_forecast_512.pt")
|
26 |
-
return _forecast_tensor[:,:forecast_length,:]
|
27 |
-
elif os.path.basename(file_name) == "air_passangers.csv":
|
28 |
-
_forecast_tensor = torch.load("data/air_passengers_forecast_512.pt")
|
29 |
-
return _forecast_tensor[:,:forecast_length,:]
|
30 |
-
else:
|
31 |
-
forecast = model.forecast(context=input_data, prediction_length=forecast_length)
|
32 |
-
return forecast[0]
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
def plot_forecast_plotly(timeseries, quantile_predictions, timeseries_name):
|
37 |
-
"""
|
38 |
-
- timeseries: 1D list/array of historical values.
|
39 |
-
- quantile_predictions: 2D array of shape (pred_len, n_q),
|
40 |
-
with quantiles sorted left→right.
|
41 |
-
- timeseries_name: string label.
|
42 |
-
"""
|
43 |
-
fig = go.Figure()
|
44 |
-
|
45 |
-
# 1) Plot historical data (blue line, no markers)
|
46 |
-
x_hist = list(range(len(timeseries)))
|
47 |
-
fig.add_trace(go.Scatter(
|
48 |
-
x=x_hist,
|
49 |
-
y=timeseries,
|
50 |
-
mode="lines", # no markers
|
51 |
-
name=f"{timeseries_name} – Given Data",
|
52 |
-
line=dict(color="blue", width=2),
|
53 |
-
))
|
54 |
-
|
55 |
-
# 2) X-axis indices for forecasts
|
56 |
-
pred_len = quantile_predictions.shape[0]
|
57 |
-
x_pred = list(range(len(timeseries) - 1, len(timeseries) - 1 + pred_len))
|
58 |
-
|
59 |
-
# 3) Extract lower, upper, and median quantiles
|
60 |
-
lower_q = quantile_predictions[:, 0]
|
61 |
-
upper_q = quantile_predictions[:, -1]
|
62 |
-
n_q = quantile_predictions.shape[1]
|
63 |
-
median_idx = n_q // 2
|
64 |
-
median_q = quantile_predictions[:, median_idx]
|
65 |
-
|
66 |
-
# 4) Lower‐bound trace (invisible line, still shows on hover)
|
67 |
-
fig.add_trace(go.Scatter(
|
68 |
-
x=x_pred,
|
69 |
-
y=lower_q,
|
70 |
-
mode="lines",
|
71 |
-
line=dict(color="rgba(0, 0, 0, 0)", width=0),
|
72 |
-
name=f"{timeseries_name} – 10% Quantile",
|
73 |
-
hovertemplate="Lower: %{y:.2f}<extra></extra>"
|
74 |
-
))
|
75 |
-
|
76 |
-
# 5) Upper‐bound trace (shaded down to lower_q)
|
77 |
-
fig.add_trace(go.Scatter(
|
78 |
-
x=x_pred,
|
79 |
-
y=upper_q,
|
80 |
-
mode="lines",
|
81 |
-
line=dict(color="rgba(0, 0, 0, 0)", width=0),
|
82 |
-
fill="tonexty",
|
83 |
-
fillcolor="rgba(128, 128, 128, 0.3)",
|
84 |
-
name=f"{timeseries_name} – 90% Quantile",
|
85 |
-
hovertemplate="Upper: %{y:.2f}<extra></extra>"
|
86 |
-
))
|
87 |
-
|
88 |
-
# 6) Median trace (orange) on top
|
89 |
-
fig.add_trace(go.Scatter(
|
90 |
-
x=x_pred,
|
91 |
-
y=median_q,
|
92 |
-
mode="lines",
|
93 |
-
name=f"{timeseries_name} – Median Forecast",
|
94 |
-
line=dict(color="orange", width=2),
|
95 |
-
hovertemplate="Median: %{y:.2f}<extra></extra>"
|
96 |
-
))
|
97 |
-
|
98 |
-
# 7) Layout: title on left (y=0.95), legend on right (y=0.95)
|
99 |
-
fig.update_layout(
|
100 |
-
template="plotly_dark",
|
101 |
-
title=dict(
|
102 |
-
text=f"Timeseries: {timeseries_name}",
|
103 |
-
x=0.10, # left‐align
|
104 |
-
xanchor="left",
|
105 |
-
y=0.90, # near top
|
106 |
-
yanchor="bottom",
|
107 |
-
font=dict(size=18, family="Arial", color="white")
|
108 |
-
),
|
109 |
-
xaxis=dict(
|
110 |
-
rangeslider=dict(visible=True), # <-- put rangeslider here
|
111 |
-
fixedrange=False
|
112 |
-
),
|
113 |
-
xaxis_title="Time",
|
114 |
-
yaxis_title="Value",
|
115 |
-
hovermode="x unified",
|
116 |
-
margin=dict(
|
117 |
-
t=120, # increase top margin to fit title+legend comfortably
|
118 |
-
b=40,
|
119 |
-
l=60,
|
120 |
-
r=40
|
121 |
-
),
|
122 |
-
# height=plot_height,
|
123 |
-
# width=plot_width,
|
124 |
-
autosize=True,
|
125 |
-
)
|
126 |
-
|
127 |
-
return fig
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
def load_table(file_path):
|
134 |
-
ext = file_path.split(".")[-1].lower()
|
135 |
-
if ext == "csv":
|
136 |
-
return pd.read_csv(file_path)
|
137 |
-
elif ext in ("xls", "xlsx"):
|
138 |
-
return pd.read_excel(file_path)
|
139 |
-
elif ext == "parquet":
|
140 |
-
return pd.read_parquet(file_path)
|
141 |
-
else:
|
142 |
-
raise ValueError("Unsupported format. Use CSV, XLS, XLSX, or PARQUET.")
|
143 |
-
|
144 |
-
|
145 |
-
def extract_names_and_update(file, preset_filename):
|
146 |
-
try:
|
147 |
-
# Determine which file to use and get default forecast length
|
148 |
-
if file is not None:
|
149 |
-
df = load_table(file.name)
|
150 |
-
default_length = get_default_forecast_length(file.name)
|
151 |
-
else:
|
152 |
-
if not preset_filename or preset_filename == "-- No preset selected --":
|
153 |
-
return gr.update(choices=[], value=[]), [], gr.update(value=256)
|
154 |
-
df = load_table(preset_filename)
|
155 |
-
default_length = get_default_forecast_length(preset_filename)
|
156 |
-
|
157 |
-
if df.shape[1] > 0 and df.iloc[:, 0].dtype == object and not df.iloc[:, 0].str.isnumeric().all():
|
158 |
-
names = df.iloc[:, 0].tolist()
|
159 |
-
else:
|
160 |
-
names = [f"Series {i}" for i in range(len(df))]
|
161 |
-
|
162 |
-
return (
|
163 |
-
gr.update(choices=names, value=names),
|
164 |
-
names,
|
165 |
-
gr.update(value=default_length)
|
166 |
-
)
|
167 |
-
except Exception:
|
168 |
-
return gr.update(choices=[], value=[]), [], gr.update(value=256)
|
169 |
-
|
170 |
-
|
171 |
-
def filter_names(search_term, all_names):
|
172 |
-
if not all_names:
|
173 |
-
return gr.update(choices=[], value=[])
|
174 |
-
if not search_term:
|
175 |
-
return gr.update(choices=all_names, value=all_names)
|
176 |
-
lower = search_term.lower()
|
177 |
-
filtered = [n for n in all_names if lower in str(n).lower()]
|
178 |
-
return gr.update(choices=filtered, value=filtered)
|
179 |
-
|
180 |
-
|
181 |
-
def check_all(names_list):
|
182 |
-
return gr.update(value=names_list)
|
183 |
-
|
184 |
-
|
185 |
-
def uncheck_all(_):
|
186 |
-
return gr.update(value=[])
|
187 |
-
|
188 |
-
def get_default_forecast_length(file_path):
|
189 |
-
"""Get default forecast length based on filename"""
|
190 |
-
if file_path is None:
|
191 |
-
return 64
|
192 |
-
|
193 |
-
filename = os.path.basename(file_path)
|
194 |
-
if filename == "loop.csv" or filename == "ett2.csv":
|
195 |
-
return 256
|
196 |
-
elif filename == "air_passangers.csv":
|
197 |
-
return 48
|
198 |
-
else:
|
199 |
-
return 64
|
200 |
-
|
201 |
-
|
202 |
-
def display_filtered_forecast(file, preset_filename, selected_names, forecast_length):
|
203 |
-
try:
|
204 |
-
# 1) If no file or preset selected, show an error
|
205 |
-
if file is None and (preset_filename is None or preset_filename == "-- No preset selected --"):
|
206 |
-
return None, "No file selected."
|
207 |
-
|
208 |
-
# 2) Load DataFrame and remember which filename to pass to model_forecast
|
209 |
-
if file is not None:
|
210 |
-
df = load_table(file.name)
|
211 |
-
file_name = file.name
|
212 |
-
else:
|
213 |
-
df = load_table(preset_filename)
|
214 |
-
file_name = preset_filename
|
215 |
-
|
216 |
-
if df.shape[1]>2048:
|
217 |
-
df = df.iloc[:,-2048:]
|
218 |
-
gr.Info("Maximum of 2048 steps per timeseries (row) is allowed, hence last 2048 kept. ℹ️", duration=5)
|
219 |
-
|
220 |
-
|
221 |
-
# 3) Determine whether first column is names or numeric
|
222 |
-
if (
|
223 |
-
df.shape[1] > 0
|
224 |
-
and df.iloc[:, 0].dtype == object
|
225 |
-
and not df.iloc[:, 0].str.isnumeric().all()
|
226 |
-
):
|
227 |
-
all_names = df.iloc[:, 0].tolist()
|
228 |
-
data_only = df.iloc[:, 1:].astype(float)
|
229 |
-
else:
|
230 |
-
all_names = [f"Series {i}" for i in range(len(df))]
|
231 |
-
data_only = df.astype(float)
|
232 |
-
|
233 |
-
# 4) Build mask from selected_names
|
234 |
-
mask = [name in selected_names for name in all_names]
|
235 |
-
if not any(mask):
|
236 |
-
return None, "No timeseries chosen to plot."
|
237 |
-
|
238 |
-
filtered_data = data_only.iloc[mask, :].values # shape = (n_selected, seq_len)
|
239 |
-
filtered_names = [all_names[i] for i, m in enumerate(mask) if m]
|
240 |
-
n_selected = filtered_data.shape[0]
|
241 |
-
if n_selected>30:
|
242 |
-
raise gr.Error("Maximum of 30 timeseries (rows) is possible to choose", duration=5)
|
243 |
-
|
244 |
-
# 5) First call model_forecast on all series, then select only the masked rows
|
245 |
-
full_data = data_only.values # shape = (n_all, seq_len)
|
246 |
-
full_out = model_forecast(full_data, forecast_length=forecast_length, file_name=file_name)
|
247 |
-
|
248 |
-
# Now pick only the rows we actually filtered
|
249 |
-
out = full_out[mask, :, :] # shape = (n_selected, pred_len, n_q)
|
250 |
-
inp = torch.tensor(filtered_data)
|
251 |
-
|
252 |
-
# 6) Create one subplot per selected series, with vertical spacing
|
253 |
-
subplot_height_px = 350 # px per subplot
|
254 |
-
n_selected = len(filtered_names)
|
255 |
-
fig = make_subplots(
|
256 |
-
rows=n_selected,
|
257 |
-
cols=1,
|
258 |
-
shared_xaxes=False,
|
259 |
-
subplot_titles=filtered_names,
|
260 |
-
row_heights=[1] * n_selected, # all rows equal height
|
261 |
-
)
|
262 |
-
fig.update_layout(
|
263 |
-
height=subplot_height_px * n_selected,
|
264 |
-
template="plotly_dark",
|
265 |
-
margin=dict(t=50, b=50)
|
266 |
-
)
|
267 |
-
|
268 |
-
for idx in range(n_selected):
|
269 |
-
ts = inp[idx].numpy().tolist()
|
270 |
-
qp = out[idx].numpy()
|
271 |
-
series_name = filtered_names[idx]
|
272 |
-
|
273 |
-
# a) plot historical data (blue line)
|
274 |
-
x_hist = list(range(len(ts)))
|
275 |
-
fig.add_trace(
|
276 |
-
go.Scatter(
|
277 |
-
x=x_hist,
|
278 |
-
y=ts,
|
279 |
-
mode="lines",
|
280 |
-
name=f"{series_name} – Given Data",
|
281 |
-
line=dict(color="blue", width=2),
|
282 |
-
showlegend=False
|
283 |
-
),
|
284 |
-
row=idx + 1, col=1
|
285 |
-
)
|
286 |
-
|
287 |
-
# b) compute forecast indices
|
288 |
-
pred_len = qp.shape[0]
|
289 |
-
x_pred = list(range(len(ts) - 1, len(ts) - 1 + pred_len))
|
290 |
-
|
291 |
-
lower_q = qp[:, 0]
|
292 |
-
upper_q = qp[:, -1]
|
293 |
-
n_q = qp.shape[1]
|
294 |
-
median_idx = n_q // 2
|
295 |
-
median_q = qp[:, median_idx]
|
296 |
-
|
297 |
-
# c) lower‐bound (invisible)
|
298 |
-
fig.add_trace(
|
299 |
-
go.Scatter(
|
300 |
-
x=x_pred,
|
301 |
-
y=lower_q,
|
302 |
-
mode="lines",
|
303 |
-
line=dict(color="rgba(0,0,0,0)", width=0),
|
304 |
-
name=f"{series_name} – 10% Quantile",
|
305 |
-
hovertemplate="10% Quantile: %{y:.2f}<extra></extra>",
|
306 |
-
showlegend=False
|
307 |
-
),
|
308 |
-
row=idx + 1, col=1
|
309 |
-
)
|
310 |
-
|
311 |
-
# d) upper‐bound (shaded area)
|
312 |
-
fig.add_trace(
|
313 |
-
go.Scatter(
|
314 |
-
x=x_pred,
|
315 |
-
y=upper_q,
|
316 |
-
mode="lines",
|
317 |
-
line=dict(color="rgba(0,0,0,0)", width=0),
|
318 |
-
fill="tonexty",
|
319 |
-
fillcolor="rgba(128,128,128,0.3)",
|
320 |
-
name=f"{series_name} – 90% Quantile",
|
321 |
-
hovertemplate="90% Quantile: %{y:.2f}<extra></extra>",
|
322 |
-
showlegend=False
|
323 |
-
),
|
324 |
-
row=idx + 1, col=1
|
325 |
-
)
|
326 |
-
|
327 |
-
# e) median forecast (orange line)
|
328 |
-
fig.add_trace(
|
329 |
-
go.Scatter(
|
330 |
-
x=x_pred,
|
331 |
-
y=median_q,
|
332 |
-
mode="lines",
|
333 |
-
name=f"{series_name} – Median Forecast",
|
334 |
-
line=dict(color="orange", width=2),
|
335 |
-
hovertemplate="Median: %{y:.2f}<extra></extra>",
|
336 |
-
showlegend=False
|
337 |
-
),
|
338 |
-
row=idx + 1, col=1
|
339 |
-
)
|
340 |
-
|
341 |
-
# f) label axes for each subplot
|
342 |
-
fig.update_xaxes(title_text="Time", row=idx + 1, col=1)
|
343 |
-
fig.update_yaxes(title_text="Value", row=idx + 1, col=1)
|
344 |
-
|
345 |
-
# 7) Global layout tweaks
|
346 |
-
fig.update_layout(
|
347 |
-
template="plotly_dark",
|
348 |
-
height=300 * n_selected, # 300px per subplot
|
349 |
-
title=dict(
|
350 |
-
text="Forecasts for Selected Timeseries",
|
351 |
-
x=0.5,
|
352 |
-
font=dict(size=20, family="Arial", color="white")
|
353 |
-
),
|
354 |
-
hovermode="x unified",
|
355 |
-
margin=dict(t=120, b=40, l=60, r=40),
|
356 |
-
showlegend=False
|
357 |
-
)
|
358 |
-
|
359 |
-
return fig, ""
|
360 |
-
except gr.Error as e:
|
361 |
-
raise gr.Error(e, duration=5)
|
362 |
-
|
363 |
-
except Exception as e:
|
364 |
-
return None, f"Error: {str(e)}"
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
# ----------------------------
|
369 |
-
# Gradio layout: two columns + instructions
|
370 |
-
# ----------------------------
|
371 |
-
|
372 |
-
with gr.Blocks(fill_width=True,theme=gr.themes.Ocean()) as demo:
|
373 |
-
gr.Markdown("# 📈 TiRex - timeseries forecasting 📊")
|
374 |
-
gr.Markdown("Upload data or choose a preset, filter by name, then click Plot.")
|
375 |
-
|
376 |
-
with gr.Row():
|
377 |
-
# Left column: controls
|
378 |
-
with gr.Column(scale=1):
|
379 |
-
gr.Markdown("## Data Selection")
|
380 |
-
file_input = gr.File(
|
381 |
-
label="Upload CSV / XLSX / PARQUET",
|
382 |
-
file_types=[".csv", ".xls", ".xlsx", ".parquet"]
|
383 |
-
)
|
384 |
-
preset_choices = ["-- No preset selected --", "data/loop.csv", "data/air_passangers.csv", 'data/ett2.csv']
|
385 |
-
|
386 |
-
preset_dropdown = gr.Dropdown(
|
387 |
-
label="Or choose a preset:",
|
388 |
-
choices=preset_choices,
|
389 |
-
value="-- No preset selected --"
|
390 |
-
)
|
391 |
-
|
392 |
-
gr.Markdown("## Forecast Length Setting")
|
393 |
-
forecast_length_slider = gr.Slider(
|
394 |
-
minimum=1,
|
395 |
-
maximum=512,
|
396 |
-
value=64,
|
397 |
-
step=1,
|
398 |
-
label="Forecast Length (Steps)",
|
399 |
-
info="Choose how many future steps to forecast."
|
400 |
-
)
|
401 |
-
|
402 |
-
gr.Markdown("## Search / Filter")
|
403 |
-
search_box = gr.Textbox(placeholder="Type to filter (e.g. 'AMZN')")
|
404 |
-
filter_checkbox = gr.CheckboxGroup(
|
405 |
-
choices=[], value=[], label="Select which timeseries to show"
|
406 |
-
)
|
407 |
-
|
408 |
-
with gr.Row():
|
409 |
-
check_all_btn = gr.Button("✅ Check All")
|
410 |
-
uncheck_all_btn = gr.Button("❎ Uncheck All")
|
411 |
-
|
412 |
-
plot_button = gr.Button("▶️ Plot Forecasts")
|
413 |
-
errbox = gr.Textbox(label="Error Message", interactive=False)
|
414 |
-
with gr.Row():
|
415 |
-
gr.Image("static/nxai_logo.png", width=150, show_label=False, container=False)
|
416 |
-
gr.Image("static/tirex.jpeg", width=150, show_label=False, container=False)
|
417 |
-
|
418 |
-
with gr.Column(scale=5):
|
419 |
-
gr.Markdown("## Forecast Plot")
|
420 |
-
plot_output = gr.Plot()
|
421 |
-
|
422 |
-
# Instruction text below plot
|
423 |
-
gr.Markdown("## Instructions")
|
424 |
-
gr.Markdown(
|
425 |
-
"""
|
426 |
-
**How to format your data:**
|
427 |
-
- Your file must be a table (CSV, XLS, XLSX, or Parquet).
|
428 |
-
- **One row per timeseries.** Each row is treated as a separate series.
|
429 |
-
- If you want to **name** each series, put the name as the first value in **every** row:
|
430 |
-
- Example (CSV):
|
431 |
-
`AAPL, 120.5, 121.0, 119.8, ...`
|
432 |
-
`AMZN, 3300.0, 3310.5, 3295.2, ...`
|
433 |
-
- In that case, the first column is not numeric, so it will be used as the series name.
|
434 |
-
- If you do **not** want named series, simply leave out the first column entirely and have all values numeric:
|
435 |
-
- Example:
|
436 |
-
`120.5, 121.0, 119.8, ...`
|
437 |
-
`3300.0, 3310.5, 3295.2, ...`
|
438 |
-
- Then every row will be auto-named “Series 0, Series 1, …” in order.
|
439 |
-
- **Consistency rule:** Either all rows have a non-numeric first entry for the name, or none do. Do not mix.
|
440 |
-
- The rest of the columns (after the optional name) must be numeric data points for that series.
|
441 |
-
- You can filter by typing in the search box. Then check or uncheck individual names before plotting.
|
442 |
-
- Use “Check All” / “Uncheck All” to quickly select or deselect every series.
|
443 |
-
- Finally, click **Plot Forecasts** to view the quantile forecast for each selected series (for 64 steps ahead).
|
444 |
-
"""
|
445 |
-
)
|
446 |
-
gr.Markdown("## Citation")
|
447 |
-
# make citation as code block
|
448 |
-
gr.Markdown(
|
449 |
-
"""
|
450 |
-
If you use TiRex in your research, please cite our work:
|
451 |
-
```
|
452 |
-
@article{auerTiRexZeroShotForecasting2025,
|
453 |
-
title = {{{TiRex}}: {{Zero-Shot Forecasting Across Long}} and {{Short Horizons}} with {{Enhanced In-Context Learning}}},
|
454 |
-
author = {Auer, Andreas and Podest, Patrick and Klotz, Daniel and B{\"o}ck, Sebastian and Klambauer, G{\"u}nter and Hochreiter, Sepp},
|
455 |
-
journal = {ArXiv},
|
456 |
-
volume = {2505.23719},
|
457 |
-
year = {2025}
|
458 |
-
}
|
459 |
-
```
|
460 |
-
"""
|
461 |
-
)
|
462 |
-
|
463 |
-
names_state = gr.State([])
|
464 |
-
file_input.change(
|
465 |
-
fn=extract_names_and_update,
|
466 |
-
inputs=[file_input, preset_dropdown],
|
467 |
-
outputs=[filter_checkbox, names_state, forecast_length_slider]
|
468 |
-
)
|
469 |
-
preset_dropdown.change(
|
470 |
-
fn=extract_names_and_update,
|
471 |
-
inputs=[file_input, preset_dropdown],
|
472 |
-
outputs=[filter_checkbox, names_state, forecast_length_slider]
|
473 |
-
)
|
474 |
-
|
475 |
-
# When search term changes, filter names
|
476 |
-
search_box.change(
|
477 |
-
fn=filter_names,
|
478 |
-
inputs=[search_box, names_state],
|
479 |
-
outputs=[filter_checkbox]
|
480 |
-
)
|
481 |
-
|
482 |
-
# Check All / Uncheck All
|
483 |
-
check_all_btn.click(fn=check_all, inputs=names_state, outputs=filter_checkbox)
|
484 |
-
uncheck_all_btn.click(fn=uncheck_all, inputs=names_state, outputs=filter_checkbox)
|
485 |
-
|
486 |
-
# Plot button
|
487 |
-
plot_button.click(
|
488 |
-
fn=display_filtered_forecast,
|
489 |
-
inputs=[file_input, preset_dropdown, filter_checkbox, forecast_length_slider],
|
490 |
-
outputs=[plot_output, errbox]
|
491 |
-
)
|
492 |
-
demo.launch()
|
493 |
-
|
494 |
-
|
495 |
-
'''
|
496 |
-
gradio app.py
|
497 |
-
ssh -L 7860:localhost:7860 nikita_blago@oracle-gpu-controller -t \
|
498 |
-
ssh -L 7860:localhost:7860 compute-permanent-node-83
|
499 |
-
'''
|
500 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import time # Import time to make logs more distinct
|
3 |
+
|
4 |
+
def greet(name):
|
5 |
+
"""
|
6 |
+
This function takes a name as input and returns a personalized greeting string.
|
7 |
+
It now includes print statements for logging with flush=True to ensure
|
8 |
+
logs appear immediately in container environments like Hugging Face Spaces.
|
9 |
+
"""
|
10 |
+
# Log the function entry
|
11 |
+
# The flush=True argument is crucial for logs to appear in real-time in Docker.
|
12 |
+
print(f"[{time.ctime()}] - Function 'greet' was called.", flush=True)
|
13 |
+
|
14 |
+
if name:
|
15 |
+
# Log the received input
|
16 |
+
print(f"[{time.ctime()}] - Received input name: '{name}'", flush=True)
|
17 |
+
return f"Hello, {name}! Welcome to your first Gradio app."
|
18 |
+
else:
|
19 |
+
# Log that the input was empty
|
20 |
+
print(f"[{time.ctime()}] - No input name received.", flush=True)
|
21 |
+
return "Hello! Please enter your name."
|
22 |
+
|
23 |
+
# Create the Gradio interface
|
24 |
+
app = gr.Interface(
|
25 |
+
fn=greet,
|
26 |
+
inputs=gr.Textbox(
|
27 |
+
lines=1,
|
28 |
+
placeholder="Please enter your name here...",
|
29 |
+
label="Your Name"
|
30 |
+
),
|
31 |
+
outputs=gr.Text(label="Greeting"),
|
32 |
+
title="Simple Greeting App with Logging",
|
33 |
+
description="Enter your name to receive a greeting. Check the Hugging Face logs to see the output from the print() statements."
|
34 |
+
)
|
35 |
+
|
36 |
+
# Launch the application
|
37 |
+
if __name__ == "__main__":
|
38 |
+
print(f"[{time.ctime()}] - Starting Gradio server...", flush=True)
|
39 |
+
app.launch(server_name="0.0.0.0", server_port=7860)
|