Update app.py
Browse files
app.py
CHANGED
|
@@ -16,8 +16,9 @@ from transformers import TextIteratorStreamer
|
|
| 16 |
from threading import Thread
|
| 17 |
|
| 18 |
|
| 19 |
-
dataset = load_dataset("Namitg02/Test", split='train', streaming=False)
|
| 20 |
-
|
|
|
|
| 21 |
# Returns a list of dictionaries, each representing a row in the dataset.
|
| 22 |
print(dataset[1])
|
| 23 |
#splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=25,separators=["\n\n"]) # ["\n\n", "\n", " ", ""])
|
|
@@ -35,14 +36,16 @@ embedding_model = HuggingFaceEmbeddings(model_name = "all-MiniLM-L6-v2")
|
|
| 35 |
|
| 36 |
# Returns a FAISS wrapper vector store. Input is a list of strings. from_documents method used documents to Return VectorStore
|
| 37 |
|
| 38 |
-
data = dataset["text"]
|
|
|
|
|
|
|
| 39 |
print(data)
|
| 40 |
data = data.add_faiss_index("embeddings")
|
| 41 |
# adds a column that has a index of embeddings
|
| 42 |
|
| 43 |
|
| 44 |
print("check1")
|
| 45 |
-
question = "How can I reverse Diabetes?"
|
| 46 |
|
| 47 |
SYS_PROMPT = """You are an assistant for answering questions.
|
| 48 |
You are given the extracted parts of a long document and a question. Provide a conversational answer.
|
|
|
|
| 16 |
from threading import Thread
|
| 17 |
|
| 18 |
|
| 19 |
+
#dataset = load_dataset("Namitg02/Test", split='train', streaming=False)
|
| 20 |
+
dataset = load_dataset("not-lain/wikipedia",revision = "embedded")
|
| 21 |
+
|
| 22 |
# Returns a list of dictionaries, each representing a row in the dataset.
|
| 23 |
print(dataset[1])
|
| 24 |
#splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=25,separators=["\n\n"]) # ["\n\n", "\n", " ", ""])
|
|
|
|
| 36 |
|
| 37 |
# Returns a FAISS wrapper vector store. Input is a list of strings. from_documents method used documents to Return VectorStore
|
| 38 |
|
| 39 |
+
#data = dataset["text"]
|
| 40 |
+
data = dataset["train"]
|
| 41 |
+
|
| 42 |
print(data)
|
| 43 |
data = data.add_faiss_index("embeddings")
|
| 44 |
# adds a column that has a index of embeddings
|
| 45 |
|
| 46 |
|
| 47 |
print("check1")
|
| 48 |
+
#question = "How can I reverse Diabetes?"
|
| 49 |
|
| 50 |
SYS_PROMPT = """You are an assistant for answering questions.
|
| 51 |
You are given the extracted parts of a long document and a question. Provide a conversational answer.
|