File size: 7,914 Bytes
42c2fbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import yfinance as yf
import pandas as pd
import streamlit as st
from datetime import datetime, timedelta
# Fetch Nifty 50 tickers
def fetch_nifty50_tickers():
return [
"TATAMOTORS.NS", "RELIANCE.NS", "INFY.NS", "HDFCBANK.NS", "ICICIBANK.NS",
"SBIN.NS", "ITC.NS", "AXISBANK.NS", "MARUTI.NS", "TATASTEEL.NS",
"WIPRO.NS", "SUNPHARMA.NS", "HINDALCO.NS", "HCLTECH.NS", "NTPC.NS",
"L&T.NS", "M&M.NS", "ONGC.NS", "HDFCLIFE.NS", "ULTRACEMCO.NS",
"ADANIGREEN.NS", "BHARTIARTL.NS", "BAJAJFINSV.NS", "JSWSTEEL.NS", "DIVISLAB.NS",
"POWERGRID.NS", "KOTAKBANK.NS", "HINDUNILVR.NS", "TCS.NS", "CIPLA.NS",
"ASIANPAINT.NS", "GRASIM.NS", "BRITANNIA.NS", "SHREECEM.NS",
"TECHM.NS", "INDUSINDBK.NS", "EICHERMOT.NS", "COALINDIA.NS", "GAIL.NS",
"BOSCHLTD.NS", "M&MFIN.NS", "IDFCFIRSTB.NS", "HAVELLS.NS"
]
# Fetch large cap tickers
def fetch_large_cap_tickers():
return fetch_nifty50_tickers() # Assuming large caps are the same as Nifty 50
# Fetch small cap tickers
def fetch_small_cap_tickers():
return [
"ALOKINDS.NS", "ADANIENT.NS", "AARTIIND.NS", "AVANTIFEED.NS", "BLS.IN",
"BHEL.NS", "BIRLACORP.NS", "CARBORUNIV.NS", "CENTRALBANK.NS", "EMAMILTD.NS",
"FDC.NS", "GLAXO.NS", "GODFRYPHLP.NS", "GSKCONS.NS", "HAVELLS.NS",
"HEMIPAPER.NS", "HIL.NS", "JINDALSAW.NS", "JUBLFOOD.NS", "KOTAKMAH.NS",
"MSTCLAS.NS", "NCC.NS", "PAGEIND.NS", "PIIND.NS", "SBI.CN",
"SISL.NS", "SOMANYCERA.NS", "STAR.NS", "SUNDARAM.NS", "TATAINVEST.NS",
"VSTIND.NS", "WABCOINDIA.NS", "WELCORP.NS", "ZEELEARN.NS", "ZOMATO.NS"
]
# Get top movers
def get_top_movers(tickers, days=1):
end_date = datetime.now()
start_date = end_date - timedelta(days=days)
data = {}
for ticker in tickers:
try:
df = yf.download(ticker, start=start_date, end=end_date)
if not df.empty and 'Close' in df.columns:
df['Ticker'] = ticker
data[ticker] = df['Close'].pct_change().iloc[-1] # Percentage change
except Exception as e:
st.error(f"Error fetching data for {ticker}: {e}")
sorted_data = sorted(data.items(), key=lambda x: x[1], reverse=True)
top_gainers = sorted_data[:10]
top_losers = sorted_data[-10:]
return top_gainers, top_losers
# Format DataFrame with color
def format_df(df):
if not df.empty:
df['Percentage Change'] = pd.to_numeric(df['Percentage Change'], errors='coerce')
return df.style.applymap(lambda x: 'color: green' if x > 0 else 'color: red', subset=['Percentage Change'])
return df
# Display dashboard
def display_dashboard():
st.header("Dashboard")
# Fetch tickers
nifty50_tickers = fetch_nifty50_tickers()
large_cap_tickers = fetch_large_cap_tickers()
small_cap_tickers = fetch_small_cap_tickers()
# Get top gainers and losers
top_gainers_nifty50, top_losers_nifty50 = get_top_movers(nifty50_tickers)
top_gainers_large_cap, top_losers_large_cap = get_top_movers(large_cap_tickers)
top_gainers_small_cap, top_losers_small_cap = get_top_movers(small_cap_tickers)
# Create columns for tables
col1, col2, col3, col4 = st.columns(4)
with col1:
st.write("### Nifty 50 Top Gainers")
if top_gainers_nifty50:
df_gainers_nifty50 = pd.DataFrame(top_gainers_nifty50, columns=['Ticker', 'Percentage Change'])
st.dataframe(format_df(df_gainers_nifty50))
with col2:
st.write("### Nifty 50 Top Losers")
if top_losers_nifty50:
df_losers_nifty50 = pd.DataFrame(top_losers_nifty50, columns=['Ticker', 'Percentage Change'])
st.dataframe(format_df(df_losers_nifty50))
with col3:
st.write("### Large Cap Top Gainers")
if top_gainers_large_cap:
df_gainers_large_cap = pd.DataFrame(top_gainers_large_cap, columns=['Ticker', 'Percentage Change'])
st.dataframe(format_df(df_gainers_large_cap))
with col4:
st.write("### Large Cap Top Losers")
if top_losers_large_cap:
df_losers_large_cap = pd.DataFrame(top_losers_large_cap, columns=['Ticker', 'Percentage Change'])
st.dataframe(format_df(df_losers_large_cap))
# Fetch and display stock profile
def fetch_stock_profile(ticker):
try:
stock = yf.Ticker(ticker)
info = stock.info
profile = {
"Name": info.get('shortName', 'N/A'),
"Current Price": f"₹ {info.get('currentPrice', 'N/A')}",
"Market Cap": f"₹ {info.get('marketCap', 'N/A') / 1e7:.2f} Cr.",
"P/E Ratio": info.get('forwardEps', 'N/A'),
"Book Value": info.get('bookValue', 'N/A'),
"Dividend Yield": info.get('dividendYield', 'N/A'),
"ROCE": info.get('returnOnCapitalEmployed', 'N/A'),
"ROE": info.get('returnOnEquity', 'N/A'),
"Face Value": info.get('faceValue', 'N/A')
}
return profile
except Exception as e:
st.error(f"Error fetching profile for {ticker}: {e}")
return {}
# Display stock profile as a table
def display_profile(profile):
st.subheader("Stock Profile")
profile_df = pd.DataFrame([profile])
st.table(profile_df)
# Fetch and display quarterly results
def display_quarterly_results(ticker):
st.subheader("Quarterly Results Summary")
try:
stock = yf.Ticker(ticker)
financials = stock.quarterly_financials.T
if not financials.empty:
results = {
'Sales': financials['Total Revenue'].iloc[-1] if 'Total Revenue' in financials.columns else 'N/A',
'Operating Profit Margin': financials['Operating Income'].iloc[-1] if 'Operating Income' in financials.columns else 'N/A',
'Net Profit': financials['Net Income'].iloc[-1] if 'Net Income' in financials.columns else 'N/A'
}
results_df = pd.DataFrame([results])
st.table(results_df)
else:
st.write("No quarterly results available.")
except Exception as e:
st.write(f"Error fetching quarterly results: {e}")
# Fetch and display shareholding pattern
def display_shareholding_pattern(ticker):
st.subheader("Shareholding Pattern")
# Placeholder values; replace with actual data source or API call
data = {
'Category': ['Promoters', 'FIIs (Foreign Institutional Investors)', 'DIIs (Domestic Institutional Investors)', 'Public'],
'Holding (%)': [45.0, 20.0, 15.0, 20.0]
}
df = pd.DataFrame(data)
st.table(df)
def display_financial_ratios(ticker):
st.subheader("Financial Ratios")
stock = yf.Ticker(ticker)
try:
# Placeholder values, calculate actual values based on your requirements
ratios = {
'Debtor Days': 73,
'Working Capital Days': 194,
'Cash Conversion Cycle': 51
}
ratios_df = pd.DataFrame([ratios])
st.table(ratios_df)
except Exception as e:
st.write("Error fetching financial ratios:", e)
# Main application
# def main():
# st.title("Stock Analysis Dashboard")
# # Select ticker input
# ticker = st.text_input("Enter Stock Ticker (e.g., TATAMOTORS.NS)")
# if ticker:
# profile = fetch_stock_profile(ticker)
# if profile:
# display_profile(profile)
# display_quarterly_results(ticker)
# display_shareholding_pattern(ticker)
# # Show dashboard
# if st.button("Show Dashboard"):
# display_dashboard()
# if __name__ == "__main__":
# main()
|