File size: 7,786 Bytes
42c2fbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

import streamlit as st
import requests
from model import fetch_data, calculate_indicators, calculate_support_resistance
import os

# import argparse

# parser = argparse.ArgumentParser()
# parser.add_argument('--token', required=True)
# args = parser.parse_args()

# API_TOKEN = args.token
# Hugging Face API token and model URL
# API_TOKEN = os.environ['HUGGING_FACE_TOKEN']
API_TOKEN ='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'
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3.1-8B-Instruct"

def generate_prompt(ticker, start_date, end_date):
    """Fetch data, calculate indicators, and prepare the prompt."""
    data = fetch_data(ticker, start_date, end_date)
    
    if data is None:
        return "No data available for the given ticker and date range.", None
    
    data = calculate_indicators(data)
    support, resistance = calculate_support_resistance(data)
    
    # Additional statistics
    highest_close = data['Close'].max()
    lowest_close = data['Close'].min()
    average_close = data['Close'].mean()
    average_volume = data['Volume'].mean()
    highest_volume = data['Volume'].max()
    lowest_volume = data['Volume'].min()
    daily_returns = data['Close'].pct_change().dropna()
    volatility = daily_returns.std()
    
    recent_trend = "uptrend" if data['Close'].iloc[-1] > data['Close'].iloc[0] else "downtrend" if data['Close'].iloc[-1] < data['Close'].iloc[0] else "sideways"
    
    # Summarize the key statistics
    summary = {
        'latest_close': data['Close'].iloc[-1],
        'SMA_50': data['SMA_50'].iloc[-1],
        'EMA_50': data['EMA_50'].iloc[-1],
        'RSI': data['RSI'].iloc[-1],
        'MACD': data['MACD'].iloc[-1],
        'MACD_Signal': data['MACD_Signal'].iloc[-1],
        'Bollinger_High': data['Bollinger_High'].iloc[-1],
        'Bollinger_Low': data['Bollinger_Low'].iloc[-1],
        'ATR': data['ATR'].iloc[-1],
        'OBV': data['OBV'].iloc[-1],
        'Support': support,
        'Resistance': resistance,
        'Highest_Close': highest_close,
        'Lowest_Close': lowest_close,
        'Average_Close': average_close,
        'Average_Volume': average_volume,
        'Highest_Volume': highest_volume,
        'Lowest_Volume': lowest_volume,
        'Volatility': volatility,
        'Recent_Trend': recent_trend,
        'Percentage_Change': (data['Close'].iloc[-1] - data['Close'].iloc[-2]) / data['Close'].iloc[-2] * 100 if len(data) > 1 else 0
    }
    
    prompt = f"""

    Analyze the following stock data for {ticker} and provide a buy/sell recommendation:

    Latest Close Price: {summary['latest_close']}

    SMA 50: {summary['SMA_50']}

    EMA 50: {summary['EMA_50']}

    RSI: {summary['RSI']}

    MACD: {summary['MACD']}

    MACD Signal: {summary['MACD_Signal']}

    Bollinger Bands High: {summary['Bollinger_High']}

    Bollinger Bands Low: {summary['Bollinger_Low']}

    ATR: {summary['ATR']}

    OBV: {summary['OBV']}

    Support Level: {summary['Support']}

    Resistance Level: {summary['Resistance']}

    Highest Close Price: {summary['Highest_Close']}

    Lowest Close Price: {summary['Lowest_Close']}

    Average Close Price: {summary['Average_Close']}

    Average Volume: {summary['Average_Volume']}

    Highest Volume: {summary['Highest_Volume']}

    Lowest Volume: {summary['Lowest_Volume']}

    Volatility: {summary['Volatility']}

    Recent Trend: {summary['Recent_Trend']}

    Percentage Change: {summary['Percentage_Change']}%

    """
    
    return prompt, summary

def get_recommendation(prompt):
    """Get stock recommendation from Hugging Face API."""
    headers = {
        "Authorization": f"Bearer {API_TOKEN}",
        "Content-Type": "application/json"
    }
    payload = {"inputs": prompt}
    
    response = requests.post(API_URL, headers=headers, json=payload)
    response.raise_for_status()  # Raise an error for HTTP issues
    result = response.json()
    
    return result[0]['generated_text'].strip()

def display_recommendation(ticker, start_date, end_date):
    """Fetch data, generate prompt, get recommendation, and display it in a nice format."""
    prompt, summary = generate_prompt(ticker, start_date, end_date)
    
    if summary is None:
        st.error(prompt)
        return

    try:
        recommendation = get_recommendation(prompt)
    except Exception as e:
        st.error(f"An error occurred while getting recommendation: {e}")
        return 

    # Display in a box/table format using Streamlit
    st.markdown(f"### Stock Analysis & Recommendation for {ticker}")

    st.markdown(f"""

    <div style='border:2px solid #4CAF50; padding: 15px; border-radius: 10px;'>

        <table style='width:100%; border-collapse: collapse;'>

            <tr>

                <th style='text-align: left;'>Indicator</th>

                <th style='text-align: left;'>Value</th>

            </tr>

            <tr>

                <td>Latest Close Price</td>

                <td>{summary['latest_close']}</td>

            </tr>

            <tr>

                <td>SMA 50</td>

                <td>{summary['SMA_50']}</td>

            </tr>

            <tr>

                <td>EMA 50</td>

                <td>{summary['EMA_50']}</td>

            </tr>

            <tr>

                <td>RSI</td>

                <td>{summary['RSI']}</td>

            </tr>

            <tr>

                <td>MACD</td>

                <td>{summary['MACD']}</td>

            </tr>

            <tr>

                <td>MACD Signal</td>

                <td>{summary['MACD_Signal']}</td>

            </tr>

            <tr>

                <td>Bollinger Bands High</td>

                <td>{summary['Bollinger_High']}</td>

            </tr>

            <tr>

                <td>Bollinger Bands Low</td>

                <td>{summary['Bollinger_Low']}</td>

            </tr>

            <tr>

                <td>ATR</td>

                <td>{summary['ATR']}</td>

            </tr>

            <tr>

                <td>OBV</td>

                <td>{summary['OBV']}</td>

            </tr>

            <tr>

                <td>Support Level</td>

                <td>{summary['Support']}</td>

            </tr>

            <tr>

                <td>Resistance Level</td>

                <td>{summary['Resistance']}</td>

            </tr>

            <tr>

                <td>Highest Close Price</td>

                <td>{summary['Highest_Close']}</td>

            </tr>

            <tr>

                <td>Lowest Close Price</td>

                <td>{summary['Lowest_Close']}</td>

            </tr>

            <tr>

                <td>Average Close Price</td>

                <td>{summary['Average_Close']}</td>

            </tr>

            <tr>

                <td>Average Volume</td>

                <td>{summary['Average_Volume']}</td>

            </tr>

            <tr>

                <td>Highest Volume</td>

                <td>{summary['Highest_Volume']}</td>

            </tr>

            <tr>

                <td>Lowest Volume</td>

                <td>{summary['Lowest_Volume']}</td>

            </tr>

            <tr>

                <td>Volatility</td>

                <td>{summary['Volatility']}</td>

            </tr>

            <tr>

                <td>Recent Trend</td>

                <td>{summary['Recent_Trend']}</td>

            </tr>

            <tr>

                <td>Percentage Change</td>

                <td>{summary['Percentage_Change']}%</td>

            </tr>

        </table>

    </div>

    """, unsafe_allow_html=True)

    st.write('AI Recommendation:')
    st.write(recommendation)