import streamlit as st import pandas as pd import numpy as np import logging from model import fetch_data, calculate_indicators, calculate_support_resistance, predict_future_prices from visualizations import ( plot_stock_price, plot_predictions, plot_technical_indicators, plot_risk_levels, plot_feature_importance, plot_candlestick, plot_volume, plot_moving_averages, plot_feature_correlations ) from sklearn.metrics import ConfusionMatrixDisplay from ui import display_analysis from logger import get_logger from dashboard import display_dashboard, display_profile,fetch_stock_profile,display_quarterly_results, display_shareholding_pattern, display_financial_ratios from llm import display_recommendation #analyze_stock_with_llm # import argparse # parser = argparse.ArgumentParser() # parser.add_argument('--token', required=True) # args = parser.parse_args() # API_TOKEN = args.token logger = get_logger(__name__) st.title("Stock Analysis and Prediction") # Sidebar for navigation st.sidebar.title("Navigation") # Initialize `page` to "Analytics" by default if 'page' not in st.session_state: st.session_state['page'] = "Analytics" if st.sidebar.button("Analytics"): st.session_state['page'] = "Analytics" if st.sidebar.button("Ask to AI"): st.session_state['page'] = "Ask to AI" if st.sidebar.button("Dashboard"): st.session_state['page'] = "Dashboard" if st.sidebar.button("Profile"): st.session_state['page'] = "Profile" page = st.session_state['page'] # Function to fetch and prepare data def get_data(): ticker = st.session_state.get('ticker') start_date = st.session_state.get('start_date') end_date = st.session_state.get('end_date') try: data = fetch_data(ticker, start_date, end_date) if data is not None: data = calculate_indicators(data) return data else: st.error("Failed to fetch data. Please check the stock ticker symbol and date range.") return None except Exception as e: st.error(f"An error occurred: {e}") return None # Display content based on selected page if page == "Analytics": st.header("Analytics") # Data input section ticker = st.text_input("Stock Ticker", "BHEL.NS") start_date = st.date_input("Start Date", pd.to_datetime("2020-01-01")) end_date = st.date_input("End Date", pd.to_datetime("2024-09-04")) algorithm = st.selectbox( "Choose an Algorithm", ['Linear Regression','LSTM', 'ARIMA','Decision Tree', 'Random Forest', 'XGBoost', 'CatBoost', 'SARIMA'] ) st.session_state['ticker'] = ticker st.session_state['start_date'] = start_date st.session_state['end_date'] = end_date st.session_state['algorithm'] = algorithm # Tabs for Analyze and Visualization under Analytics tab1, tab2 = st.tabs(["Analyze", "Visualization"]) # Analyze Tab with tab1: if st.button("Analyze"): data = get_data() if data is not None: display_analysis(data, st.session_state.get('algorithm')) # Visualization Tab with tab2: st.write("### Visualizations") # Fetch and prepare data for visualization data = get_data() if data is not None: indicators = { 'SMA_50': data['SMA_50'], 'EMA_50': data['EMA_50'], 'RSI': data['RSI'], 'MACD': data['MACD'], 'MACD_Signal': data['MACD_Signal'], 'Bollinger_High': data['Bollinger_High'], 'Bollinger_Low': data['Bollinger_Low'], 'ATR': data['ATR'], 'OBV': data['OBV'] } # Visualization choices choice = st.selectbox( "Choose a type of visualization", [ "Stock Price","Volume", "Moving Averages", "Feature Correlations", "Predictions vs Actual", "Technical Indicators", "Risk Levels", "Feature Importance", "Candlestick" ] ) try: if choice == "Stock Price": plot_stock_price(data, st.session_state.get('ticker'), indicators) elif choice == "Predictions vs Actual": future_prices, _, _, _, _ = predict_future_prices(data, st.session_state.get('algorithm')) if future_prices is not None: st.line_chart(pd.DataFrame({'Actual Prices': data['Close'], 'Predicted Prices': pd.Series(future_prices).values})) else: st.error("Failed to fetch predictions.") logger.error("Failed to fetch predictions.") elif choice == "Technical Indicators": plot_technical_indicators(data, indicators) elif choice == "Risk Levels": plot_risk_levels(data) elif choice == "Feature Importance": plot_feature_importance() elif choice == "Candlestick": plot_candlestick(data) elif choice == "Volume": plot_volume(data) elif choice == "Moving Averages": plot_moving_averages(data) elif choice == "Feature Correlations": plot_feature_correlations(data) except Exception as e: logger.error(f"An error occurred during visualization: {e}") st.error(f"An error occurred during visualization: {e}") else: st.error("Failed to fetch data. Please check the stock ticker symbol and date range.") logger.error("Failed to fetch data. Please check the stock ticker symbol and date range.") elif page == "Dashboard": st.title("Stock analysis and screening tool for investors in India") ticker = st.text_input("Enter stock ticker (e.g., TATAMOTORS.NS):").upper() days = st.sidebar.slider("Select number of days for top movers:", 1, 30, 30) profile = {} if ticker: profile = fetch_stock_profile(ticker) if profile: # Only display profile if it's not empty display_profile(profile) display_quarterly_results(ticker) display_shareholding_pattern(ticker) display_financial_ratios(ticker) else: st.write("No data available for the ticker entered.") st.sidebar.write("### Overview") st.sidebar.write(f"Showing top gainers and losers over the past {days} day(s).") display_dashboard() # display_profile() # # Display the main dashboard # display_dashboard() st.write("
Coming Soon A lot Updates.......
", unsafe_allow_html=True) elif page == "Profile": st.image("https://via.placeholder.com/150", caption="User Profile Photo") st.write("### User Profile") st.write("Name: Nandan Dutta") st.write("Role: Data Analyst") st.write("Email: n.dutta25@gmail.com") elif page == "Ask to AI": st.title("Ask Stock Recommendation to AI") st.write("Model: Meta LLaMA 3.1") # Input fields for the user ticker = st.text_input("Enter Stock Ticker (e.g., BHEL.NS, RELIANCE.NS):") start_date = st.date_input("Start Date", value=None) end_date = st.date_input("End Date", value=None) if st.button("Get Recommendation"): if ticker and start_date and end_date: # Ensure dates are in the correct format start_date_str = start_date.strftime('%Y-%m-%d') end_date_str = end_date.strftime('%Y-%m-%d') st.write(f"Fetching recommendation for {ticker} from {start_date_str} to {end_date_str}...") try: # Fetch the recommendation using the LLaMA model recommendations = display_recommendation(ticker, start_date_str, end_date_str) except Exception as e: st.error(f"An error occurred: {e}") else: st.error("Please enter a valid ticker and date range.") st.markdown( """

Made with ❤️ from Nandan

""", unsafe_allow_html=True ) # Display animated running disclaimer text st.write( """
This project is for educational purposes only. The information provided here should not be used for real investment decisions. Please perform your own research and consult with a financial advisor before making any investment decisions. Use this information at your own risk.
""", unsafe_allow_html=True )