File size: 8,299 Bytes
2a55e2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
🚀 Comprehensive Strategy for Building an AI Tools Platform with Ad-Based Monetization (AWS Focused for 1 Lakh DAUs)
🔍 Vision
Build a low-cost yet scalable AI tools platform where users can access various AI services (text, image, audio, etc.) by watching ads. Each tool will have dynamic credit allocation — text tools (1 min ad), image tools (2 min ad), etc.

📐 Architecture Blueprint
A robust, scalable, and cost-effective architecture will ensure smooth performance for 1 lakh DAUs.

🧩 Key Components
Frontend: Html/css/js
Backend: FastAPI / Flask (for managing AI tool requests)
AI Models: Hugging Face, DeepSeek, OpenRouter, etc.
Database: DynamoDB / PostgreSQL (low latency, scalable)
Cache Layer: Redis / ElastiCache (to reduce API costs)
Ad System: Google AdSense, AdMob, or Revcontent
Deployment & Scaling: AWS ECS + Fargate (serverless scaling)
CDN for Speed: Cloudflare (faster static content delivery)
Authentication: AWS Cognito / Auth0 for secure logins
🏗️ System Design Flow
✅ Step 1: User visits the platform and selects an AI tool.
✅ Step 2: Platform verifies user's credit balance.

🔸 If sufficient credits → Access tool directly.
🔸 If insufficient credits → Show an ad to earn credits.
✅ Step 3: Credits are dynamically assigned based on the tool:
🔹 Text Models: 1 Min Ad → +5 Credits
🔹 Image Models: 2 Min Ad → +10 Credits
 User custom Promts by user where user edit the make their own uses and user who created gets cut for promts 2% of model model tool creadit 
✅ Step 4: User request is processed via FastAPI backend.
✅ Step 5: AI Model API is triggered (DeepSeek, Mistral, OpenRouter, etc.)
✅ Step 6: Result is stored in DynamoDB and cached via Redis for repeat queries.



Tool Type	Ad Watch Time	Credits Earned	Estimated Cost Per Request
Text Models	1 Minute Ad	+5 Credits	₹0.01 - ₹0.05 per request
Image Models	2 Minute Ad	+10 Credits	₹0.10 - ₹0.50 per request
Video Models	3 Minute Ad	+15 Credits	₹0.50 - ₹1.00 per request



⚙️ Technical Stack (Optimized for AWS and Cost Efficiency)
Component	Recommended Solution
Frontend	Streamlit + React (for hybrid UI needs)
Backend	FastAPI (best for speed & scalability)
AI Model Hosting	AWS Lambda (for lightweight AI models)
AI Model APIs	Hugging Face / DeepSeek API
Database	DynamoDB (serverless, scalable)
Cache	Redis (ElastiCache for low latency)
Ad System	Google AdSense / AdMob
Deployment	AWS ECS (with Fargate for auto-scaling)
CDN	Cloudflare (for global content delivery)
Auth	AWS Cognito (scalable user management)


💰 Cost Optimization Plan for 1 Lakh DAUs
Component	Estimated Cost (₹/month)	Optimization Strategy
AWS ECS + Fargate	₹18,000 - ₹25,000	Efficient container scaling
DynamoDB (Database)	₹5,000 - ₹7,000	Use on-demand mode
Redis (ElastiCache)	₹3,000 - ₹5,000	Cache frequently accessed data
AI Model API Usage	₹20,000 - ₹40,000	Optimize prompt structure
Cloudflare (CDN)	₹5,000 - ₹8,000	Leverage caching for static files
Google AdSense Revenue	₹1,20,000 - ₹1,80,000	Based on ad engagement (30% conversion)
✅ Projected Net Profit Estimate: ₹60,000 - ₹1,00,000 (assuming 40% user engagement)

🧮 Credit System with Dynamic Scaling
Tool Type	Ad Watch Time	Credits Earned	Estimated Cost Per Request
Text Models	1 Minute Ad	+5 Credits	₹0.01 - ₹0.05 per request
Image Models	2 Minute Ad	+10 Credits	₹0.10 - ₹0.50 per request
Video Models	3 Minute Ad	+15 Credits	₹0.50 - ₹1.00 per request

✅ Logic: Higher resource-intensive models require longer ad watch times.

📋 Project Structure (Best Practices)

/app
 ├── /frontend
 │   ├── main.py
 │   ├── pages/
 │   ├── components/
     | UI/

 ├── /backend

 │   ├── api.py

 │   ├── credit_manager.py

 │   ├── ad_manager.py

 │   └── ai_service.py

 ├── /database

 │   ├── db_connector.py

 │   └── credit_tracker.py

 ├── /models

 │   ├── text_gen_model.py

 │   ├── image_gen_model.py

 │   └── video_gen_model.py

 ├── Dockerfile

 ├── requirements.txt

 ├── .env

 └── config.yaml


🔐 Security Best Practices
✅ AWS Cognito for user authentication.
✅ IAM Role Management to control resource access.
✅ Use CloudWatch for monitoring performance and security threats.
✅ Implement Rate Limiting for API abuse prevention.
✅ Set SSL/TLS encryption for secure data transmission.

📈 Scaling Strategy for 1 Lakh DAUs
✅ ECS Auto-Scaling Policies: Use CPU & Memory-based scaling triggers.
✅ DynamoDB Auto-Scaling: Set capacity limits with automatic scale-up.
✅ Implement Cloudflare CDN for fast content delivery.
✅ Optimize API requests using batch processing to minimize load.
✅ Use Lambda Edge for regional content caching.

🔊 Ad Revenue Optimization Strategy
✅ Use Google AdSense Video Ads for high-payout ads.
✅ Add Interactive Ads to boost engagement.
✅ Introduce Rewarded Ads (watch longer ads for bonus credits).
✅ Implement a Referral System to increase user retention.

✅ Step-by-Step Development Plan
1️⃣ Create Streamlit Frontend → Design dynamic UI with credit-based access.
2️⃣ Build Backend (FastAPI/Flask) → Integrate AI model APIs with token logic.
3️⃣ Set Up Ad Management System → Implement Google AdSense/AdMob integration.
4️⃣ Implement Credit-Based Workflow → Map credit logic to ad-watch duration.
5️⃣ Optimize AI Model Costs → Use caching (Redis) to reduce redundant calls.
6️⃣ Deploy on AWS ECS + Fargate → Set up auto-scaling for cost control.
7️⃣ Add Analytics → Track user behavior, ad conversion, and credit consumption.

🎯 Bonus Features for Maximum Engagement
✅ Leaderboard System: Users earn bonus credits by inviting friends.
✅ Daily Login Rewards: Encourage repeat visits with small bonuses.
✅ Premium Subscription Model: Offer ad-free premium access with special tools.
✅ Limited-Time Offers: Drive engagement with exclusive tool unlocks.

# MegicAI Platform

Multi-provider AI platform with credit system and ad-based monetization.

## Features

- **Multiple AI Providers**: Support for OpenAI, Hugging Face, and OpenRouter
- **Fallback Mechanism**: Automatically switches to available providers if one fails
- **Credit System**: Users earn credits by watching ads
- **Modern UI**: Professional interface with animations and responsive design
- **Tool Selection**: Various AI tools for different use cases (text, image, video, etc.)
- **Model Selection**: Choose specific AI provider for each request

## Quick Start

### Prerequisites

- Python 3.8+
- Redis server (for caching)

### Installation

1. Clone the repository:
   ```

   git clone https://github.com/yourusername/megicai.git

   cd megicai

   ```

2. Install dependencies:
   ```

   pip install -r requirements.txt

   ```

3. Start the application (both backend and frontend):
   ```

   python start.py

   ```

4. Access the application:
   - Frontend: http://localhost:8501
   - Backend API: http://localhost:8000

## Development Setup

1. Install development dependencies:
   ```

   pip install -r requirements-dev.txt

   ```

2. Run backend server only:
   ```

   python backend/run_server.py backend.api_minimal

   ```

3. Run frontend only:
   ```

   streamlit run frontend/main.py

   ```

## Production Deployment

### Docker Deployment

1. Build the Docker image:
   ```

   docker build -t megicai:latest .

   ```

2. Run with Docker Compose:
   ```

   docker-compose up -d

   ```

### AWS Deployment

1. Set up the required AWS resources:
   - ECS cluster for containerized deployment
   - ElastiCache (Redis) for caching
   - DynamoDB for user data and credits
   - Cognito for authentication

2. Configure environment variables in AWS Parameter Store or Secrets Manager.

3. Deploy using the AWS CDK or CloudFormation template in the `deployment` directory.

## Configuration

Edit `config.yaml` to configure:
- AI provider API keys
- Redis connection details
- Credit system parameters

## License

MIT