DocAI / scripts /predict.py
enandhag
pushed gradio app
4f8f6ef
from utils.donut_utils import (
load_donut_model_and_processor,
prepare_data_using_processor,
load_image,
)
import re
CHEQUE_PARSER_MODEL = "Nandhu/DocAI"
TASK_PROMPT = "<s>"
def parse_cheque_with_donut(input_image_path):
image = load_image(input_image_path)
donut_processor, model = load_donut_model_and_processor(CHEQUE_PARSER_MODEL)
cheque_image_tensor, input_for_decoder = prepare_data_using_processor(
donut_processor, image, TASK_PROMPT
)
outputs = model.generate(
cheque_image_tensor,
decoder_input_ids=input_for_decoder,
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=donut_processor.tokenizer.pad_token_id,
eos_token_id=donut_processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[donut_processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
output_scores=True,
)
decoded_output_sequence = donut_processor.batch_decode(outputs.sequences)[0]
extracted_cheque_details = decoded_output_sequence.replace(
donut_processor.tokenizer.eos_token, ""
).replace(donut_processor.tokenizer.pad_token, "")
## remove task prompt from token sequence
cleaned_cheque_details = re.sub(
r"<.*?>", "", extracted_cheque_details, count=1
).strip()
## generate ordered json sequence from output token sequence
cheque_details_json = donut_processor.token2json(cleaned_cheque_details)
print("cheque_details_json:", cheque_details_json)
## extract required fields from predicted json
amt_in_words = cheque_details_json["VALUE_LETTERS"]
amt_in_figures = cheque_details_json["VALUE_NUMBERS"]
payee_name = cheque_details_json["USER2NAME"]
bank_name = cheque_details_json["BANK_NAME"]
return (payee_name, amt_in_words, amt_in_figures, bank_name)