Spaces:
Sleeping
Sleeping
Push.
Browse files- README.md +60 -5
- app.py +570 -0
- flake.lock +27 -0
- flake.nix +41 -0
- get_popular_eval_datasets.py +100 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,12 +1,67 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Evaluation Dataset Quiz
|
3 |
+
emoji: 🧠
|
4 |
+
colorFrom: blue
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
+
# HuggingFace Evaluation Dataset Quiz
|
14 |
+
|
15 |
+
Test your knowledge with questions from popular evaluation datasets!
|
16 |
+
|
17 |
+
## Features
|
18 |
+
|
19 |
+
- 🎯 Interactive quiz interface built with Gradio
|
20 |
+
- 📊 8 popular evaluation datasets including:
|
21 |
+
- GSM8K (Grade School Math)
|
22 |
+
- MMLU (Massive Multitask Language Understanding)
|
23 |
+
- AI2 ARC (Science Questions)
|
24 |
+
- HellaSwag (Commonsense NLI)
|
25 |
+
- WinoGrande (Winograd Schema)
|
26 |
+
- BoolQ (Boolean Questions)
|
27 |
+
- SQuAD (Reading Comprehension)
|
28 |
+
- PIQA (Physical Reasoning)
|
29 |
+
- 🎲 Random question selection
|
30 |
+
- ✅ Immediate feedback on answers
|
31 |
+
- 📈 Score tracking
|
32 |
+
- 🔄 Support for multiple question formats:
|
33 |
+
- Multiple choice
|
34 |
+
- True/False
|
35 |
+
- Text input for QA tasks
|
36 |
+
|
37 |
+
## How to Use
|
38 |
+
|
39 |
+
1. **Select a Dataset**: Choose from the available evaluation datasets
|
40 |
+
2. **Choose Number of Questions**: Select how many questions you want (5-20)
|
41 |
+
3. **Start Quiz**: Click "Start Quiz" to begin
|
42 |
+
4. **Answer Questions**: Select or type your answer and click "Submit Answer"
|
43 |
+
5. **Get Feedback**: See if you got it right and learn the correct answer
|
44 |
+
6. **Continue**: Click "Next Question" to proceed
|
45 |
+
7. **View Score**: See your final score at the end
|
46 |
+
|
47 |
+
## Local Development
|
48 |
+
|
49 |
+
```bash
|
50 |
+
# Clone the repository
|
51 |
+
git clone <your-repo-url>
|
52 |
+
cd eval_quiz_app
|
53 |
+
|
54 |
+
# Install dependencies
|
55 |
+
pip install -r requirements.txt
|
56 |
+
|
57 |
+
# Run the app
|
58 |
+
python app.py
|
59 |
+
```
|
60 |
+
|
61 |
+
## Deployment
|
62 |
+
|
63 |
+
This app is designed to run on HuggingFace Spaces. Simply push to your Space repository and it will deploy automatically.
|
64 |
+
|
65 |
+
## Contributing
|
66 |
+
|
67 |
+
Feel free to add more datasets or improve the quiz functionality!
|
app.py
ADDED
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datasets import load_dataset, get_dataset_config_names
|
3 |
+
import random
|
4 |
+
from typing import List, Tuple
|
5 |
+
import logging
|
6 |
+
|
7 |
+
# Set up logging
|
8 |
+
logging.basicConfig(
|
9 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
10 |
+
)
|
11 |
+
|
12 |
+
# Popular evaluation datasets with their configurations
|
13 |
+
EVAL_DATASETS = {
|
14 |
+
"openai/gsm8k": {
|
15 |
+
"name": "GSM8K - Grade School Math",
|
16 |
+
"type": "qa",
|
17 |
+
"config": "main",
|
18 |
+
"question_field": "question",
|
19 |
+
"answer_field": "answer",
|
20 |
+
"split": "train",
|
21 |
+
},
|
22 |
+
"cais/mmlu": {
|
23 |
+
"name": "MMLU - Massive Multitask Language Understanding",
|
24 |
+
"type": "multiple_choice",
|
25 |
+
"config": "all",
|
26 |
+
"question_field": "question",
|
27 |
+
"choices_field": "choices",
|
28 |
+
"answer_field": "answer",
|
29 |
+
"split": "test",
|
30 |
+
},
|
31 |
+
"allenai/ai2_arc": {
|
32 |
+
"name": "AI2 ARC - Science Questions",
|
33 |
+
"type": "multiple_choice",
|
34 |
+
"config": "ARC-Challenge",
|
35 |
+
"question_field": "question",
|
36 |
+
"choices_field": "choices",
|
37 |
+
"answer_field": "answerKey",
|
38 |
+
"split": "train",
|
39 |
+
},
|
40 |
+
"Rowan/hellaswag": {
|
41 |
+
"name": "HellaSwag - Commonsense NLI",
|
42 |
+
"type": "multiple_choice",
|
43 |
+
"question_field": "ctx",
|
44 |
+
"choices_field": "endings",
|
45 |
+
"answer_field": "label",
|
46 |
+
"split": "train",
|
47 |
+
},
|
48 |
+
"allenai/winogrande": {
|
49 |
+
"name": "WinoGrande - Winograd Schema",
|
50 |
+
"type": "binary_choice",
|
51 |
+
"config": "winogrande_xl",
|
52 |
+
"question_field": "sentence",
|
53 |
+
"option1_field": "option1",
|
54 |
+
"option2_field": "option2",
|
55 |
+
"answer_field": "answer",
|
56 |
+
"split": "train",
|
57 |
+
},
|
58 |
+
"google/boolq": {
|
59 |
+
"name": "BoolQ - Boolean Questions",
|
60 |
+
"type": "true_false",
|
61 |
+
"question_field": "question",
|
62 |
+
"context_field": "passage",
|
63 |
+
"answer_field": "answer",
|
64 |
+
"split": "train",
|
65 |
+
},
|
66 |
+
"rajpurkar/squad": {
|
67 |
+
"name": "SQuAD - Reading Comprehension",
|
68 |
+
"type": "extractive_qa",
|
69 |
+
"question_field": "question",
|
70 |
+
"context_field": "context",
|
71 |
+
"answer_field": "answers",
|
72 |
+
"split": "train",
|
73 |
+
},
|
74 |
+
"allenai/piqa": {
|
75 |
+
"name": "PIQA - Physical Reasoning",
|
76 |
+
"type": "binary_choice",
|
77 |
+
"question_field": "goal",
|
78 |
+
"option1_field": "sol1",
|
79 |
+
"option2_field": "sol2",
|
80 |
+
"answer_field": "label",
|
81 |
+
"split": "train",
|
82 |
+
},
|
83 |
+
}
|
84 |
+
|
85 |
+
|
86 |
+
class QuizApp:
|
87 |
+
def __init__(self):
|
88 |
+
self.current_dataset = None
|
89 |
+
self.current_dataset_name = None
|
90 |
+
self.questions = []
|
91 |
+
self.current_question_idx = 0
|
92 |
+
self.score = 0
|
93 |
+
self.total_questions = 0
|
94 |
+
|
95 |
+
def load_dataset_questions(self, dataset_name: str, num_questions: int = 10):
|
96 |
+
"""Load random questions from the selected dataset"""
|
97 |
+
try:
|
98 |
+
config = EVAL_DATASETS[dataset_name]
|
99 |
+
|
100 |
+
# Try to load dataset with config if specified
|
101 |
+
try:
|
102 |
+
if "config" in config:
|
103 |
+
dataset = load_dataset(
|
104 |
+
dataset_name, config["config"], split=config["split"]
|
105 |
+
)
|
106 |
+
else:
|
107 |
+
dataset = load_dataset(dataset_name, split=config["split"])
|
108 |
+
except ValueError as e:
|
109 |
+
# If config is missing, try to get available configs
|
110 |
+
if "Config name is missing" in str(e):
|
111 |
+
configs = get_dataset_config_names(dataset_name)
|
112 |
+
# Use first config or "all" if available
|
113 |
+
if "all" in configs:
|
114 |
+
selected_config = "all"
|
115 |
+
else:
|
116 |
+
selected_config = configs[0]
|
117 |
+
print(
|
118 |
+
f"Auto-selected config '{selected_config}' for {dataset_name}"
|
119 |
+
)
|
120 |
+
dataset = load_dataset(
|
121 |
+
dataset_name, selected_config, split=config["split"]
|
122 |
+
)
|
123 |
+
else:
|
124 |
+
raise e
|
125 |
+
|
126 |
+
# Sample random questions
|
127 |
+
total_examples = len(dataset)
|
128 |
+
num_questions = min(num_questions, total_examples)
|
129 |
+
indices = random.sample(range(total_examples), num_questions)
|
130 |
+
|
131 |
+
self.questions = []
|
132 |
+
for idx in indices:
|
133 |
+
example = dataset[idx]
|
134 |
+
self.questions.append(example)
|
135 |
+
|
136 |
+
self.current_dataset = config
|
137 |
+
self.current_dataset_name = dataset_name
|
138 |
+
self.current_question_idx = 0
|
139 |
+
self.score = 0
|
140 |
+
self.total_questions = len(self.questions)
|
141 |
+
|
142 |
+
return True, f"Loaded {num_questions} questions from {config['name']}"
|
143 |
+
|
144 |
+
except Exception as e:
|
145 |
+
return False, f"Error loading dataset: {str(e)}"
|
146 |
+
|
147 |
+
def get_current_question(self) -> Tuple[str, List[str], str]:
|
148 |
+
"""Get the current question formatted for display"""
|
149 |
+
if not self.questions or self.current_question_idx >= len(self.questions):
|
150 |
+
return "", [], ""
|
151 |
+
|
152 |
+
question_data = self.questions[self.current_question_idx]
|
153 |
+
config = self.current_dataset
|
154 |
+
|
155 |
+
logging.info(f"\n{'=' * 60}")
|
156 |
+
logging.info(f"Dataset: {self.current_dataset_name}")
|
157 |
+
logging.info(f"Question {self.current_question_idx + 1}/{self.total_questions}")
|
158 |
+
logging.info(f"Raw question data: {repr(question_data)}")
|
159 |
+
logging.info(f"{'=' * 60}\n")
|
160 |
+
|
161 |
+
# Format question based on dataset type
|
162 |
+
question_type = config["type"]
|
163 |
+
|
164 |
+
if question_type == "multiple_choice":
|
165 |
+
question = question_data[config["question_field"]]
|
166 |
+
choices = question_data[config["choices_field"]]
|
167 |
+
if config["answer_field"] in question_data:
|
168 |
+
answer = question_data[config["answer_field"]]
|
169 |
+
else:
|
170 |
+
answer = ""
|
171 |
+
|
172 |
+
# Format choices with letters
|
173 |
+
formatted_choices = [
|
174 |
+
f"{chr(65 + i)}. {choice}" for i, choice in enumerate(choices)
|
175 |
+
]
|
176 |
+
return question, formatted_choices, question_type
|
177 |
+
|
178 |
+
elif question_type == "true_false":
|
179 |
+
question = question_data[config["question_field"]]
|
180 |
+
if "context_field" in config:
|
181 |
+
context = question_data[config["context_field"]]
|
182 |
+
question = f"Context: {context}\n\nQuestion: {question}"
|
183 |
+
return question, ["True", "False"], question_type
|
184 |
+
|
185 |
+
elif question_type == "binary_choice":
|
186 |
+
question = question_data[config["question_field"]]
|
187 |
+
option1 = question_data[config["option1_field"]]
|
188 |
+
option2 = question_data[config["option2_field"]]
|
189 |
+
return question, [f"A. {option1}", f"B. {option2}"], question_type
|
190 |
+
|
191 |
+
elif question_type == "qa" or question_type == "extractive_qa":
|
192 |
+
question = question_data[config["question_field"]]
|
193 |
+
if "context_field" in config and config["context_field"] in question_data:
|
194 |
+
context = question_data[config["context_field"]]
|
195 |
+
question = f"Context: {context[:500]}...\n\nQuestion: {question}"
|
196 |
+
return question, [], question_type
|
197 |
+
|
198 |
+
return "", [], ""
|
199 |
+
|
200 |
+
def format_answer(self, answer: str, dataset_name: str) -> str:
|
201 |
+
"""Format answer based on dataset type for better readability"""
|
202 |
+
if dataset_name == "openai/gsm8k":
|
203 |
+
# GSM8K has specific formatting with equations and final answer
|
204 |
+
# Replace <<...>> with proper math formatting
|
205 |
+
import re
|
206 |
+
|
207 |
+
# Convert <<equation>> to LaTeX
|
208 |
+
answer = re.sub(r"<<([^>]+)>>", r"$\\1$", answer)
|
209 |
+
# Format the final answer line
|
210 |
+
answer = answer.replace("####", "\n\n**Final Answer:**")
|
211 |
+
# Ensure proper line breaks
|
212 |
+
answer = answer.replace(". ", ".\n")
|
213 |
+
return answer
|
214 |
+
elif dataset_name == "cais/mmlu":
|
215 |
+
# MMLU answers are usually single letters or short phrases
|
216 |
+
return answer
|
217 |
+
elif dataset_name == "rajpurkar/squad":
|
218 |
+
# SQuAD answers might need context
|
219 |
+
return answer
|
220 |
+
else:
|
221 |
+
# Default formatting for other datasets
|
222 |
+
return answer
|
223 |
+
|
224 |
+
def check_answer(self, user_answer: str) -> Tuple[bool, str]:
|
225 |
+
"""Check if the user's answer is correct"""
|
226 |
+
if not self.questions or self.current_question_idx >= len(self.questions):
|
227 |
+
return False, "No question available"
|
228 |
+
|
229 |
+
question_data = self.questions[self.current_question_idx]
|
230 |
+
config = self.current_dataset
|
231 |
+
question_type = config["type"]
|
232 |
+
|
233 |
+
if question_type == "multiple_choice":
|
234 |
+
correct_answer_idx = question_data[config["answer_field"]]
|
235 |
+
# Handle both numeric and letter answers
|
236 |
+
if isinstance(correct_answer_idx, int):
|
237 |
+
correct_letter = chr(65 + correct_answer_idx)
|
238 |
+
else:
|
239 |
+
correct_letter = str(correct_answer_idx)
|
240 |
+
|
241 |
+
user_letter = user_answer.strip().upper()[0] if user_answer else ""
|
242 |
+
is_correct = user_letter == correct_letter
|
243 |
+
|
244 |
+
if is_correct:
|
245 |
+
return True, "✅ **Correct!**"
|
246 |
+
else:
|
247 |
+
choices = question_data[config["choices_field"]]
|
248 |
+
correct_choice = (
|
249 |
+
choices[correct_answer_idx]
|
250 |
+
if isinstance(correct_answer_idx, int)
|
251 |
+
else correct_answer_idx
|
252 |
+
)
|
253 |
+
logging.info(f"Raw answer (multiple choice): {repr(correct_choice)}")
|
254 |
+
formatted_answer = self.format_answer(
|
255 |
+
correct_choice, self.current_dataset_name
|
256 |
+
)
|
257 |
+
return (
|
258 |
+
False,
|
259 |
+
f"❌ **Incorrect**\n\nThe correct answer was **{correct_letter}**:\n\n{formatted_answer}",
|
260 |
+
)
|
261 |
+
|
262 |
+
elif question_type == "true_false":
|
263 |
+
correct_answer = question_data[config["answer_field"]]
|
264 |
+
user_bool = user_answer.lower().strip() == "true"
|
265 |
+
is_correct = user_bool == correct_answer
|
266 |
+
|
267 |
+
if is_correct:
|
268 |
+
return True, "✅ **Correct!**"
|
269 |
+
else:
|
270 |
+
return (
|
271 |
+
False,
|
272 |
+
f"❌ **Incorrect**\n\nThe correct answer was **{correct_answer}**",
|
273 |
+
)
|
274 |
+
|
275 |
+
elif question_type == "binary_choice":
|
276 |
+
correct_answer_idx = question_data[config["answer_field"]]
|
277 |
+
user_idx = 0 if user_answer.strip().upper().startswith("A") else 1
|
278 |
+
is_correct = user_idx == correct_answer_idx
|
279 |
+
|
280 |
+
if is_correct:
|
281 |
+
return True, "✅ **Correct!**"
|
282 |
+
else:
|
283 |
+
correct_letter = "A" if correct_answer_idx == 0 else "B"
|
284 |
+
option_field = (
|
285 |
+
config["option1_field"]
|
286 |
+
if correct_answer_idx == 0
|
287 |
+
else config["option2_field"]
|
288 |
+
)
|
289 |
+
correct_option = question_data[option_field]
|
290 |
+
logging.info(f"Raw answer (binary choice): {repr(correct_option)}")
|
291 |
+
formatted_answer = self.format_answer(
|
292 |
+
correct_option, self.current_dataset_name
|
293 |
+
)
|
294 |
+
return (
|
295 |
+
False,
|
296 |
+
f"❌ **Incorrect**\n\nThe correct answer was **{correct_letter}**:\n\n{formatted_answer}",
|
297 |
+
)
|
298 |
+
|
299 |
+
elif question_type in ["qa", "extractive_qa"]:
|
300 |
+
# For QA, we'll do a simple check - in real app, you'd want more sophisticated matching
|
301 |
+
correct_answer = question_data[config["answer_field"]]
|
302 |
+
if isinstance(correct_answer, dict) and "text" in correct_answer:
|
303 |
+
correct_answer = (
|
304 |
+
correct_answer["text"][0] if correct_answer["text"] else ""
|
305 |
+
)
|
306 |
+
elif isinstance(correct_answer, list) and len(correct_answer) > 0:
|
307 |
+
correct_answer = (
|
308 |
+
correct_answer[0]["text"]
|
309 |
+
if isinstance(correct_answer[0], dict)
|
310 |
+
else str(correct_answer[0])
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
correct_answer = str(correct_answer)
|
314 |
+
|
315 |
+
# Extract final answer for GSM8K and similar datasets
|
316 |
+
import re
|
317 |
+
|
318 |
+
# For GSM8K, extract the final answer after ####
|
319 |
+
if "####" in correct_answer:
|
320 |
+
final_answer_match = re.search(r"####\s*(.+)", correct_answer)
|
321 |
+
if final_answer_match:
|
322 |
+
final_answer = final_answer_match.group(1).strip()
|
323 |
+
else:
|
324 |
+
final_answer = correct_answer
|
325 |
+
else:
|
326 |
+
final_answer = correct_answer
|
327 |
+
|
328 |
+
# Extract numbers from both answers for comparison
|
329 |
+
correct_numbers = re.findall(r"-?\d+\.?\d*", final_answer)
|
330 |
+
user_numbers = re.findall(r"-?\d+\.?\d*", user_answer)
|
331 |
+
|
332 |
+
# Check if answers match
|
333 |
+
is_correct = False
|
334 |
+
|
335 |
+
# If both have numbers, compare the numbers
|
336 |
+
if correct_numbers and user_numbers:
|
337 |
+
# Convert to float for comparison to handle decimals
|
338 |
+
try:
|
339 |
+
correct_num = float(
|
340 |
+
correct_numbers[-1]
|
341 |
+
) # Take the last number as final answer
|
342 |
+
user_num = float(user_numbers[-1]) # Take the last number from user
|
343 |
+
is_correct = (
|
344 |
+
abs(correct_num - user_num) < 0.0001
|
345 |
+
) # Small tolerance for float comparison
|
346 |
+
except ValueError:
|
347 |
+
# Fall back to string comparison
|
348 |
+
is_correct = correct_numbers[-1] == user_numbers[-1]
|
349 |
+
else:
|
350 |
+
# Fall back to substring matching for non-numeric answers
|
351 |
+
is_correct = (
|
352 |
+
user_answer.lower().strip() in correct_answer.lower()
|
353 |
+
or correct_answer.lower() in user_answer.lower().strip()
|
354 |
+
)
|
355 |
+
|
356 |
+
if is_correct:
|
357 |
+
return True, "✅ **Correct!**"
|
358 |
+
else:
|
359 |
+
logging.info(f"Raw answer (QA): {repr(correct_answer)}")
|
360 |
+
logging.info(f"Extracted final answer: {repr(final_answer)}")
|
361 |
+
logging.info(
|
362 |
+
f"Correct numbers: {correct_numbers}, User numbers: {user_numbers}"
|
363 |
+
)
|
364 |
+
formatted_answer = self.format_answer(
|
365 |
+
correct_answer, self.current_dataset_name
|
366 |
+
)
|
367 |
+
return (
|
368 |
+
False,
|
369 |
+
f"❌ **Incorrect**\n\n**The correct answer was:**\n\n{formatted_answer}",
|
370 |
+
)
|
371 |
+
|
372 |
+
return False, "Unknown question type"
|
373 |
+
|
374 |
+
|
375 |
+
# Create global quiz app instance
|
376 |
+
quiz_app = QuizApp()
|
377 |
+
|
378 |
+
|
379 |
+
def create_dataset_display():
|
380 |
+
"""Create the dataset listing display"""
|
381 |
+
dataset_info = []
|
382 |
+
for dataset_id, config in EVAL_DATASETS.items():
|
383 |
+
dataset_info.append(
|
384 |
+
f"**{config['name']}**\n- Dataset: {dataset_id}\n- Type: {config['type']}"
|
385 |
+
)
|
386 |
+
|
387 |
+
return "\n\n".join(dataset_info)
|
388 |
+
|
389 |
+
|
390 |
+
def start_quiz(dataset_choice: str, num_questions: int):
|
391 |
+
"""Start a new quiz with the selected dataset"""
|
392 |
+
# Extract dataset ID from the choice
|
393 |
+
dataset_id = None
|
394 |
+
for did, config in EVAL_DATASETS.items():
|
395 |
+
if config["name"] in dataset_choice:
|
396 |
+
dataset_id = did
|
397 |
+
break
|
398 |
+
|
399 |
+
if not dataset_id:
|
400 |
+
return (
|
401 |
+
"Please select a dataset",
|
402 |
+
"",
|
403 |
+
"",
|
404 |
+
gr.update(visible=False),
|
405 |
+
gr.update(visible=False),
|
406 |
+
"0/0",
|
407 |
+
)
|
408 |
+
|
409 |
+
success, message = quiz_app.load_dataset_questions(dataset_id, num_questions)
|
410 |
+
|
411 |
+
if success:
|
412 |
+
question, choices, q_type = quiz_app.get_current_question()
|
413 |
+
|
414 |
+
if q_type in ["multiple_choice", "true_false", "binary_choice"]:
|
415 |
+
return (
|
416 |
+
message,
|
417 |
+
question,
|
418 |
+
gr.update(choices=choices, visible=True, value=None),
|
419 |
+
gr.update(visible=False),
|
420 |
+
gr.update(visible=True),
|
421 |
+
f"Question 1/{quiz_app.total_questions}",
|
422 |
+
)
|
423 |
+
else:
|
424 |
+
return (
|
425 |
+
message,
|
426 |
+
question,
|
427 |
+
gr.update(visible=False),
|
428 |
+
gr.update(visible=True, value=""),
|
429 |
+
gr.update(visible=True),
|
430 |
+
f"Question 1/{quiz_app.total_questions}",
|
431 |
+
)
|
432 |
+
else:
|
433 |
+
return (
|
434 |
+
message,
|
435 |
+
"",
|
436 |
+
gr.update(visible=False),
|
437 |
+
gr.update(visible=False),
|
438 |
+
gr.update(visible=False),
|
439 |
+
"0/0",
|
440 |
+
)
|
441 |
+
|
442 |
+
|
443 |
+
def submit_answer(answer_choice, answer_text):
|
444 |
+
"""Submit answer and show feedback"""
|
445 |
+
# Determine which answer to use
|
446 |
+
if answer_choice:
|
447 |
+
answer = answer_choice
|
448 |
+
else:
|
449 |
+
answer = answer_text
|
450 |
+
|
451 |
+
is_correct, feedback = quiz_app.check_answer(answer)
|
452 |
+
|
453 |
+
if is_correct:
|
454 |
+
quiz_app.score += 1
|
455 |
+
|
456 |
+
return gr.update(value=feedback, visible=True), gr.update(visible=True)
|
457 |
+
|
458 |
+
|
459 |
+
def next_question():
|
460 |
+
"""Move to the next question"""
|
461 |
+
quiz_app.current_question_idx += 1
|
462 |
+
|
463 |
+
if quiz_app.current_question_idx >= quiz_app.total_questions:
|
464 |
+
# Quiz complete
|
465 |
+
final_score = f"## 🎉 Quiz Complete!\n\n**Your score:** {quiz_app.score}/{quiz_app.total_questions} ({quiz_app.score / quiz_app.total_questions * 100:.1f}%)"
|
466 |
+
return (
|
467 |
+
gr.update(value=final_score, visible=True),
|
468 |
+
"",
|
469 |
+
gr.update(visible=False),
|
470 |
+
gr.update(visible=False),
|
471 |
+
gr.update(visible=False),
|
472 |
+
gr.update(visible=False),
|
473 |
+
"Quiz Complete",
|
474 |
+
)
|
475 |
+
|
476 |
+
question, choices, q_type = quiz_app.get_current_question()
|
477 |
+
|
478 |
+
if q_type in ["multiple_choice", "true_false", "binary_choice"]:
|
479 |
+
return (
|
480 |
+
gr.update(value="", visible=False), # Clear feedback
|
481 |
+
question,
|
482 |
+
gr.update(choices=choices, visible=True, value=None),
|
483 |
+
gr.update(visible=False),
|
484 |
+
gr.update(visible=True),
|
485 |
+
gr.update(visible=False),
|
486 |
+
f"Question {quiz_app.current_question_idx + 1}/{quiz_app.total_questions}",
|
487 |
+
)
|
488 |
+
else:
|
489 |
+
return (
|
490 |
+
gr.update(value="", visible=False), # Clear feedback
|
491 |
+
question,
|
492 |
+
gr.update(visible=False),
|
493 |
+
gr.update(visible=True, value=""),
|
494 |
+
gr.update(visible=True),
|
495 |
+
gr.update(visible=False),
|
496 |
+
f"Question {quiz_app.current_question_idx + 1}/{quiz_app.total_questions}",
|
497 |
+
)
|
498 |
+
|
499 |
+
|
500 |
+
# Create Gradio interface
|
501 |
+
with gr.Blocks(title="HuggingFace Evaluation Dataset Quiz") as demo:
|
502 |
+
gr.Markdown("# 🤗 Evaluation Dataset Quiz")
|
503 |
+
gr.Markdown(
|
504 |
+
"Test yourself with questions from popular HuggingFace evaluation datasets!"
|
505 |
+
)
|
506 |
+
|
507 |
+
with gr.Tabs():
|
508 |
+
with gr.Tab("Dataset Selection"):
|
509 |
+
with gr.Row():
|
510 |
+
dataset_dropdown = gr.Dropdown(
|
511 |
+
choices=[config["name"] for config in EVAL_DATASETS.values()],
|
512 |
+
label="Select Dataset",
|
513 |
+
value=list(EVAL_DATASETS.values())[0]["name"],
|
514 |
+
)
|
515 |
+
num_questions_slider = gr.Slider(
|
516 |
+
minimum=5, maximum=20, value=10, step=1, label="Number of Questions"
|
517 |
+
)
|
518 |
+
|
519 |
+
start_button = gr.Button("Start Quiz", variant="primary")
|
520 |
+
status_message = gr.Textbox(label="Status", interactive=False)
|
521 |
+
|
522 |
+
with gr.Tab("Quiz"):
|
523 |
+
progress_text = gr.Textbox(label="Progress", value="0/0", interactive=False)
|
524 |
+
question_display = gr.Textbox(label="Question", lines=5, interactive=False)
|
525 |
+
|
526 |
+
# Answer inputs (one will be visible at a time)
|
527 |
+
answer_radio = gr.Radio(label="Select your answer", visible=False)
|
528 |
+
answer_textbox = gr.Textbox(label="Type your answer", visible=False)
|
529 |
+
|
530 |
+
submit_button = gr.Button("Submit Answer", variant="primary", visible=False)
|
531 |
+
|
532 |
+
feedback_display = gr.Markdown(label="Feedback", visible=True)
|
533 |
+
next_button = gr.Button("Next Question", visible=False)
|
534 |
+
|
535 |
+
# Connect events
|
536 |
+
start_button.click(
|
537 |
+
start_quiz,
|
538 |
+
inputs=[dataset_dropdown, num_questions_slider],
|
539 |
+
outputs=[
|
540 |
+
status_message,
|
541 |
+
question_display,
|
542 |
+
answer_radio,
|
543 |
+
answer_textbox,
|
544 |
+
submit_button,
|
545 |
+
progress_text,
|
546 |
+
],
|
547 |
+
)
|
548 |
+
|
549 |
+
submit_button.click(
|
550 |
+
submit_answer,
|
551 |
+
inputs=[answer_radio, answer_textbox],
|
552 |
+
outputs=[feedback_display, next_button],
|
553 |
+
)
|
554 |
+
|
555 |
+
next_button.click(
|
556 |
+
next_question,
|
557 |
+
outputs=[
|
558 |
+
feedback_display,
|
559 |
+
question_display,
|
560 |
+
answer_radio,
|
561 |
+
answer_textbox,
|
562 |
+
submit_button,
|
563 |
+
next_button,
|
564 |
+
progress_text,
|
565 |
+
],
|
566 |
+
)
|
567 |
+
|
568 |
+
if __name__ == "__main__":
|
569 |
+
demo.launch()
|
570 |
+
|
flake.lock
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nodes": {
|
3 |
+
"nixpkgs": {
|
4 |
+
"locked": {
|
5 |
+
"lastModified": 1730531603,
|
6 |
+
"narHash": "sha256-Dqg6si5CqIzm87sp57j5nTaeBbWhHFaVyG7V6L8k3lY=",
|
7 |
+
"owner": "NixOS",
|
8 |
+
"repo": "nixpkgs",
|
9 |
+
"rev": "7ffd9ae656aec493492b44d0ddfb28e79a1ea25d",
|
10 |
+
"type": "github"
|
11 |
+
},
|
12 |
+
"original": {
|
13 |
+
"owner": "NixOS",
|
14 |
+
"ref": "nixos-unstable",
|
15 |
+
"repo": "nixpkgs",
|
16 |
+
"type": "github"
|
17 |
+
}
|
18 |
+
},
|
19 |
+
"root": {
|
20 |
+
"inputs": {
|
21 |
+
"nixpkgs": "nixpkgs"
|
22 |
+
}
|
23 |
+
}
|
24 |
+
},
|
25 |
+
"root": "root",
|
26 |
+
"version": 7
|
27 |
+
}
|
flake.nix
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
inputs = {
|
3 |
+
nixpkgs.url = "github:NixOS/nixpkgs/nixos-unstable";
|
4 |
+
};
|
5 |
+
|
6 |
+
outputs =
|
7 |
+
{ nixpkgs, ... }:
|
8 |
+
let
|
9 |
+
forAllSystems = nixpkgs.lib.genAttrs [
|
10 |
+
"aarch64-linux"
|
11 |
+
"x86_64-linux"
|
12 |
+
"aarch64-darwin"
|
13 |
+
];
|
14 |
+
in
|
15 |
+
{
|
16 |
+
devShells = forAllSystems (
|
17 |
+
system:
|
18 |
+
let
|
19 |
+
pkgs = nixpkgs.legacyPackages.${system};
|
20 |
+
in
|
21 |
+
{
|
22 |
+
default = pkgs.mkShell {
|
23 |
+
buildInputs = with pkgs; [
|
24 |
+
rustup
|
25 |
+
python3Packages.python
|
26 |
+
python3Packages.venvShellHook
|
27 |
+
];
|
28 |
+
venvDir = "./.venv";
|
29 |
+
postVenvCreation = ''
|
30 |
+
unset SOURCE_DATE_EPOCH
|
31 |
+
'';
|
32 |
+
postShellHook = ''
|
33 |
+
unset SOURCE_DATE_EPOCH
|
34 |
+
'';
|
35 |
+
LD_LIBRARY_PATH = "$LD_LIBRARY_PATH:${pkgs.stdenv.cc.cc.lib}/lib:${pkgs.zlib}/lib:/run/opengl-driver/lib";
|
36 |
+
};
|
37 |
+
|
38 |
+
}
|
39 |
+
);
|
40 |
+
};
|
41 |
+
}
|
get_popular_eval_datasets.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Script to fetch the 10 most used evaluation datasets from Hugging Face.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import requests
|
7 |
+
from typing import List, Dict
|
8 |
+
|
9 |
+
def get_popular_eval_datasets(limit: int = 10) -> List[Dict]:
|
10 |
+
"""
|
11 |
+
Fetch popular evaluation datasets from Hugging Face Hub API.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
limit: Number of datasets to return
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
List of dataset information dictionaries
|
18 |
+
"""
|
19 |
+
# Common evaluation dataset tags and keywords
|
20 |
+
eval_keywords = [
|
21 |
+
"evaluation", "benchmark", "eval", "test-set", "validation",
|
22 |
+
"leaderboard", "assessment", "metric"
|
23 |
+
]
|
24 |
+
|
25 |
+
# Search for datasets with evaluation-related tags
|
26 |
+
base_url = "https://huggingface.co/api/datasets"
|
27 |
+
params = {
|
28 |
+
"sort": "downloads", # Sort by most downloaded
|
29 |
+
"direction": "-1", # Descending order
|
30 |
+
"limit": 100, # Get more to filter
|
31 |
+
"full": "true"
|
32 |
+
}
|
33 |
+
|
34 |
+
response = requests.get(base_url, params=params)
|
35 |
+
response.raise_for_status()
|
36 |
+
|
37 |
+
datasets = response.json()
|
38 |
+
|
39 |
+
# Filter for evaluation datasets
|
40 |
+
eval_datasets = []
|
41 |
+
for dataset in datasets:
|
42 |
+
# Check if dataset has evaluation-related tags or is commonly used for eval
|
43 |
+
tags = dataset.get("tags", [])
|
44 |
+
dataset_id = dataset.get("id", "").lower()
|
45 |
+
|
46 |
+
# Check for eval keywords in tags or dataset name
|
47 |
+
is_eval = any(
|
48 |
+
any(keyword in str(tag).lower() for keyword in eval_keywords)
|
49 |
+
for tag in tags
|
50 |
+
) or any(keyword in dataset_id for keyword in eval_keywords)
|
51 |
+
|
52 |
+
# Also include well-known evaluation datasets
|
53 |
+
known_eval_datasets = [
|
54 |
+
"glue", "superglue", "squad", "xnli", "hellaswag", "winogrande",
|
55 |
+
"arc", "mmlu", "gsm8k", "humaneval", "mbpp", "truthfulqa",
|
56 |
+
"bigbench", "c4", "piqa", "siqa", "boolq", "copa", "multirc",
|
57 |
+
"record", "rte", "wic", "wsc", "cb", "axb", "axg", "swag",
|
58 |
+
"race", "qnli", "wnli", "sst", "cola", "stsb", "mrpc", "qqp"
|
59 |
+
]
|
60 |
+
|
61 |
+
if any(known in dataset_id for known in known_eval_datasets):
|
62 |
+
is_eval = True
|
63 |
+
|
64 |
+
if is_eval:
|
65 |
+
eval_datasets.append({
|
66 |
+
"name": dataset.get("id", ""),
|
67 |
+
"downloads": dataset.get("downloads", 0),
|
68 |
+
"likes": dataset.get("likes", 0),
|
69 |
+
"tags": [tag for tag in tags if isinstance(tag, str)][:5], # First 5 tags
|
70 |
+
"description": dataset.get("description", "")[:200] # First 200 chars
|
71 |
+
})
|
72 |
+
|
73 |
+
# Sort by downloads and return top N
|
74 |
+
eval_datasets.sort(key=lambda x: x["downloads"], reverse=True)
|
75 |
+
return eval_datasets[:limit]
|
76 |
+
|
77 |
+
def main():
|
78 |
+
"""Main function to fetch and display popular evaluation datasets."""
|
79 |
+
print("Fetching the 10 most used evaluation datasets from Hugging Face...\n")
|
80 |
+
|
81 |
+
try:
|
82 |
+
datasets = get_popular_eval_datasets(10)
|
83 |
+
|
84 |
+
for i, dataset in enumerate(datasets, 1):
|
85 |
+
print(f"{i}. {dataset['name']}")
|
86 |
+
print(f" Downloads: {dataset['downloads']:,}")
|
87 |
+
print(f" Likes: {dataset['likes']}")
|
88 |
+
if dataset['tags']:
|
89 |
+
print(f" Tags: {', '.join(dataset['tags'])}")
|
90 |
+
if dataset['description']:
|
91 |
+
print(f" Description: {dataset['description']}...")
|
92 |
+
print()
|
93 |
+
|
94 |
+
except requests.exceptions.RequestException as e:
|
95 |
+
print(f"Error fetching data from Hugging Face: {e}")
|
96 |
+
except Exception as e:
|
97 |
+
print(f"An error occurred: {e}")
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
datasets
|
3 |
+
transformers
|
4 |
+
requests
|
5 |
+
huggingface-hub
|