Spaces:
Running
Running
File size: 12,751 Bytes
8009765 ad45b6e 8009765 78c8cdc 8009765 ad45b6e 78c8cdc 8009765 ad45b6e 8009765 ad45b6e 8009765 78c8cdc ad45b6e 8009765 ad45b6e 78c8cdc ad45b6e 78c8cdc ad45b6e 8009765 ad45b6e 8009765 78c8cdc 8009765 78c8cdc ad45b6e 78c8cdc 8009765 78c8cdc 8009765 913377b 78c8cdc 913377b 78c8cdc ad45b6e 78c8cdc ad45b6e 78c8cdc 913377b 78c8cdc 8009765 913377b 8009765 913377b 8009765 913377b 78c8cdc 913377b 8009765 ad45b6e 8009765 913377b 8009765 913377b 8009765 913377b 78c8cdc ad45b6e 78c8cdc 8009765 78c8cdc 8009765 78c8cdc 8009765 ad45b6e 78c8cdc 8009765 913377b 8009765 78c8cdc ad45b6e 78c8cdc 8009765 ad45b6e 78c8cdc 8009765 ad45b6e 8009765 ad45b6e 8009765 78c8cdc 8009765 78c8cdc 8009765 ad45b6e 8009765 913377b 8009765 78c8cdc 8009765 ad45b6e 8009765 78c8cdc ad45b6e 8009765 ad45b6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import os
import torch
import time
import gradio as gr
import requests
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from peft import PeftModel
from PIL import Image
from io import BytesIO
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables for model
model = None
processor = None
device = None
model_loaded = False
def load_model():
"""Load the AI model with PEFT adapter (Colab style)"""
global model, processor, device, model_loaded
logger.info("Loading AI model with PEFT adapter (Colab style)...")
# === Load AI Model === (base model + adapter)
base_model_id = "google/paligemma-3b-mix-448"
adapter_model_id = "mychen76/paligemma-3b-mix-448-med_30k-ct-brain"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
logger.info(f"Using device: {device}")
logger.info(f"Using dtype: {dtype}")
logger.info(f"CUDA available: {torch.cuda.is_available()}")
logger.info(f"Base model: {base_model_id}")
logger.info(f"Adapter model: {adapter_model_id}")
try:
# Load processor from base model
logger.info("Loading processor...")
processor = AutoProcessor.from_pretrained(base_model_id)
# Load base model
logger.info("Loading base model...")
model = PaliGemmaForConditionalGeneration.from_pretrained(
base_model_id,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None
)
# Load PEFT adapter
logger.info("Loading PEFT adapter...")
model = PeftModel.from_pretrained(model, adapter_model_id)
# Set to eval mode
model.eval()
# Move to device if not using device_map
if not torch.cuda.is_available():
model = model.to(device)
logger.info("Model loaded successfully!")
model_loaded = True
return True
except Exception as e:
logger.error(f"Error loading model: {e}")
logger.error(f"Error type: {type(e)}")
# If license error, provide helpful message
if "license" in str(e).lower() or "access" in str(e).lower():
logger.error("This appears to be a license/access issue with the base model.")
logger.error("You may need to:")
logger.error("1. Accept the license for google/paligemma-3b-mix-448 on HuggingFace")
logger.error("2. Login with: huggingface-cli login")
logger.error("3. Use your HuggingFace token")
model_loaded = False
return False
def run_model(img):
"""Run model inference exactly like Colab"""
prompt = "<image> Findings:"
inputs = processor(images=img, text=prompt, return_tensors="pt").to(device, dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
generated_ids = model.generate(**inputs, max_new_tokens=100)
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return result
def analyze_brain_scan(image, patient_name="", patient_age="", symptoms=""):
"""Analyze brain scan image and return medical findings"""
try:
logger.info(f"=== ANALYZE FUNCTION CALLED ===")
logger.info(f"Image received: {image is not None}")
logger.info(f"Model loaded: {model_loaded}")
logger.info(f"Model object: {model is not None}")
if not model_loaded or model is None:
error_msg = """
## β οΈ Model Loading Error
The AI model is not available. This could be due to:
- **License Issue**: The base model requires accepting Google's license
- **PEFT Loading Issue**: Problem loading the medical adapter
- **Memory limitations**: Insufficient resources
- **Network connectivity**: Download issues
**To fix this:**
1. Accept the license for `google/paligemma-3b-mix-448` on HuggingFace
2. Login with your HuggingFace token: `huggingface-cli login`
3. Restart the application
Please check the logs for more details.
"""
logger.error("Model not loaded - returning error message")
return error_msg
if image is None:
logger.warning("No image provided")
return "## β οΈ No Image\n\nPlease upload a brain scan image first, then click 'Analyze Brain Scan'."
logger.info("Converting image to PIL format...")
# Convert to PIL Image if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image).convert("RGB")
logger.info("Starting AI inference...")
# Run AI inference using Colab method
result = run_model(image)
logger.info(f"AI inference completed. Result length: {len(result) if result else 0}")
# Format the response
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
formatted_result = f"""
## Brain CT Analysis Results
**Patient Information:**
- Name: {patient_name or 'Not provided'}
- Age: {patient_age or 'Not provided'}
- Symptoms: {symptoms or 'Not provided'}
- Analysis Date: {timestamp}
**AI Findings:**
{result}
**Model Info:**
- Base Model: google/paligemma-3b-mix-448
- Medical Adapter: mychen76/paligemma-3b-mix-448-med_30k-ct-brain
- Device: {device}
**Note:** This is an AI-generated analysis for educational purposes only.
Always consult with qualified medical professionals for actual diagnosis.
"""
logger.info("Analysis completed successfully")
return formatted_result
except Exception as e:
logger.error(f"Analysis error: {e}")
logger.error(f"Error type: {type(e)}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
return f"""
## β Analysis Error
An error occurred during analysis:
**Error**: {str(e)}
**Error Type**: {type(e).__name__}
Please check the logs for more details and try again.
"""
def create_api_response(image, patient_name="", patient_age="", symptoms=""):
"""Create API-compatible response for integration"""
try:
logger.info(f"=== API RESPONSE FUNCTION CALLED ===")
if not model_loaded or model is None:
return {"error": "Model not loaded - check license and authentication"}
if image is None:
return {"error": "No image provided"}
# Convert to PIL Image if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image).convert("RGB")
# Run AI inference using Colab method
result = run_model(image)
# Create API response (matching your original format)
response = {
"prediction": result,
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"patient_info": {
"name": patient_name,
"age": patient_age,
"symptoms": symptoms
},
"model_info": {
"base_model": "google/paligemma-3b-mix-448",
"adapter_model": "mychen76/paligemma-3b-mix-448-med_30k-ct-brain",
"device": str(device),
"model_loaded": model_loaded
}
}
return response
except Exception as e:
logger.error(f"API error: {e}")
import traceback
logger.error(f"API Traceback: {traceback.format_exc()}")
return {"error": f"Analysis failed: {str(e)}"}
def get_model_status():
"""Get current model status"""
return f"""
## π€ Model Status
- **Model Loaded**: {model_loaded}
- **Device**: {device}
- **CUDA Available**: {torch.cuda.is_available()}
- **Model Object**: {type(model).__name__ if model else 'None'}
- **Processor Object**: {type(processor).__name__ if processor else 'None'}
- **PyTorch Version**: {torch.__version__}
## π Model Configuration
- **Base Model**: google/paligemma-3b-mix-448
- **Medical Adapter**: mychen76/paligemma-3b-mix-448-med_30k-ct-brain
- **Model Type**: PEFT/LoRA Fine-tuned
## β οΈ Requirements
- HuggingFace account with accepted license for PaliGemma
- HuggingFace token authentication
- PEFT library for adapter loading
"""
# Load model at startup
logger.info("Initializing Brain CT Analyzer with PEFT (Colab Style)...")
load_success = load_model()
if load_success:
logger.info("Model loaded successfully!")
else:
logger.error("Failed to load model!")
# Create Gradio interface
with gr.Blocks(title="Brain CT Analyzer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π§ Brain CT Analyzer
Upload a brain CT scan image for AI-powered analysis. This tool uses the PaliGemma medical model
with specialized medical fine-tuning to provide preliminary findings.
**β οΈ Important:** This is for educational/research purposes only. Always consult qualified medical professionals.
**π Requirements:** This model requires accepting Google's PaliGemma license and HuggingFace authentication.
""")
# Model status section
with gr.Accordion("π§ Model Status", open=not model_loaded):
status_output = gr.Markdown(value=get_model_status())
refresh_btn = gr.Button("π Refresh Status")
refresh_btn.click(fn=get_model_status, outputs=status_output)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
label="Upload Brain CT Scan",
type="pil",
height=400
)
with gr.Group():
patient_name = gr.Textbox(
label="Patient Name (Optional)",
placeholder="Enter patient name"
)
patient_age = gr.Textbox(
label="Patient Age (Optional)",
placeholder="Enter patient age"
)
symptoms = gr.Textbox(
label="Symptoms (Optional)",
placeholder="Describe symptoms",
lines=3
)
analyze_btn = gr.Button(
"π Analyze Brain Scan",
variant="primary",
size="lg",
interactive=model_loaded
)
with gr.Column(scale=1):
result_output = gr.Markdown(
label="Analysis Results",
value="Upload an image and click 'Analyze Brain Scan' to see results." if model_loaded else "β οΈ Model not loaded. Check status above and ensure license acceptance."
)
# API endpoint simulation
with gr.Accordion("π API Response (for developers)", open=False):
api_output = gr.JSON(label="API Response Format")
# Test function for debugging
def test_function():
logger.info("=== TEST BUTTON CLICKED ===")
return f"β
Test button works! Model loaded: {model_loaded}"
# Add test button for debugging
with gr.Row():
test_btn = gr.Button("π§ͺ Test Button (Debug)", variant="secondary")
test_output = gr.Textbox(label="Test Output", visible=True)
test_btn.click(fn=test_function, outputs=test_output)
# Event handlers - ALWAYS attach, let the function handle the logic
analyze_btn.click(
fn=analyze_brain_scan,
inputs=[image_input, patient_name, patient_age, symptoms],
outputs=result_output
)
analyze_btn.click(
fn=create_api_response,
inputs=[image_input, patient_name, patient_age, symptoms],
outputs=api_output
)
# Instructions
gr.Markdown("""
## π Usage Instructions:
1. **Accept License**: Go to [google/paligemma-3b-mix-448](https://huggingface.co/google/paligemma-3b-mix-448) and accept the license
2. **Authenticate**: Login with `huggingface-cli login` using your token
3. Upload a brain CT scan image (JPEG or PNG)
4. Optionally fill in patient information
5. Click "Analyze Brain Scan" to get AI findings
6. Review the results in the output panel
## π Integration:
This interface can be integrated with your medical app using the Gradio API.
## β
Based on Working Colab Code:
This version uses PEFT to load the medical fine-tuned adapter on top of the base PaliGemma model,
exactly matching your working Google Colab setup.
""")
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |