Nateware's picture
test
913377b
import os
import torch
import time
import gradio as gr
import requests
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
from peft import PeftModel
from PIL import Image
from io import BytesIO
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables for model
model = None
processor = None
device = None
model_loaded = False
def load_model():
"""Load the AI model with PEFT adapter (Colab style)"""
global model, processor, device, model_loaded
logger.info("Loading AI model with PEFT adapter (Colab style)...")
# === Load AI Model === (base model + adapter)
base_model_id = "google/paligemma-3b-mix-448"
adapter_model_id = "mychen76/paligemma-3b-mix-448-med_30k-ct-brain"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
logger.info(f"Using device: {device}")
logger.info(f"Using dtype: {dtype}")
logger.info(f"CUDA available: {torch.cuda.is_available()}")
logger.info(f"Base model: {base_model_id}")
logger.info(f"Adapter model: {adapter_model_id}")
try:
# Load processor from base model
logger.info("Loading processor...")
processor = AutoProcessor.from_pretrained(base_model_id)
# Load base model
logger.info("Loading base model...")
model = PaliGemmaForConditionalGeneration.from_pretrained(
base_model_id,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None
)
# Load PEFT adapter
logger.info("Loading PEFT adapter...")
model = PeftModel.from_pretrained(model, adapter_model_id)
# Set to eval mode
model.eval()
# Move to device if not using device_map
if not torch.cuda.is_available():
model = model.to(device)
logger.info("Model loaded successfully!")
model_loaded = True
return True
except Exception as e:
logger.error(f"Error loading model: {e}")
logger.error(f"Error type: {type(e)}")
# If license error, provide helpful message
if "license" in str(e).lower() or "access" in str(e).lower():
logger.error("This appears to be a license/access issue with the base model.")
logger.error("You may need to:")
logger.error("1. Accept the license for google/paligemma-3b-mix-448 on HuggingFace")
logger.error("2. Login with: huggingface-cli login")
logger.error("3. Use your HuggingFace token")
model_loaded = False
return False
def run_model(img):
"""Run model inference exactly like Colab"""
prompt = "<image> Findings:"
inputs = processor(images=img, text=prompt, return_tensors="pt").to(device, dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
generated_ids = model.generate(**inputs, max_new_tokens=100)
result = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return result
def analyze_brain_scan(image, patient_name="", patient_age="", symptoms=""):
"""Analyze brain scan image and return medical findings"""
try:
logger.info(f"=== ANALYZE FUNCTION CALLED ===")
logger.info(f"Image received: {image is not None}")
logger.info(f"Model loaded: {model_loaded}")
logger.info(f"Model object: {model is not None}")
if not model_loaded or model is None:
error_msg = """
## ⚠️ Model Loading Error
The AI model is not available. This could be due to:
- **License Issue**: The base model requires accepting Google's license
- **PEFT Loading Issue**: Problem loading the medical adapter
- **Memory limitations**: Insufficient resources
- **Network connectivity**: Download issues
**To fix this:**
1. Accept the license for `google/paligemma-3b-mix-448` on HuggingFace
2. Login with your HuggingFace token: `huggingface-cli login`
3. Restart the application
Please check the logs for more details.
"""
logger.error("Model not loaded - returning error message")
return error_msg
if image is None:
logger.warning("No image provided")
return "## ⚠️ No Image\n\nPlease upload a brain scan image first, then click 'Analyze Brain Scan'."
logger.info("Converting image to PIL format...")
# Convert to PIL Image if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image).convert("RGB")
logger.info("Starting AI inference...")
# Run AI inference using Colab method
result = run_model(image)
logger.info(f"AI inference completed. Result length: {len(result) if result else 0}")
# Format the response
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
formatted_result = f"""
## Brain CT Analysis Results
**Patient Information:**
- Name: {patient_name or 'Not provided'}
- Age: {patient_age or 'Not provided'}
- Symptoms: {symptoms or 'Not provided'}
- Analysis Date: {timestamp}
**AI Findings:**
{result}
**Model Info:**
- Base Model: google/paligemma-3b-mix-448
- Medical Adapter: mychen76/paligemma-3b-mix-448-med_30k-ct-brain
- Device: {device}
**Note:** This is an AI-generated analysis for educational purposes only.
Always consult with qualified medical professionals for actual diagnosis.
"""
logger.info("Analysis completed successfully")
return formatted_result
except Exception as e:
logger.error(f"Analysis error: {e}")
logger.error(f"Error type: {type(e)}")
import traceback
logger.error(f"Traceback: {traceback.format_exc()}")
return f"""
## ❌ Analysis Error
An error occurred during analysis:
**Error**: {str(e)}
**Error Type**: {type(e).__name__}
Please check the logs for more details and try again.
"""
def create_api_response(image, patient_name="", patient_age="", symptoms=""):
"""Create API-compatible response for integration"""
try:
logger.info(f"=== API RESPONSE FUNCTION CALLED ===")
if not model_loaded or model is None:
return {"error": "Model not loaded - check license and authentication"}
if image is None:
return {"error": "No image provided"}
# Convert to PIL Image if needed
if not isinstance(image, Image.Image):
image = Image.fromarray(image).convert("RGB")
# Run AI inference using Colab method
result = run_model(image)
# Create API response (matching your original format)
response = {
"prediction": result,
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"patient_info": {
"name": patient_name,
"age": patient_age,
"symptoms": symptoms
},
"model_info": {
"base_model": "google/paligemma-3b-mix-448",
"adapter_model": "mychen76/paligemma-3b-mix-448-med_30k-ct-brain",
"device": str(device),
"model_loaded": model_loaded
}
}
return response
except Exception as e:
logger.error(f"API error: {e}")
import traceback
logger.error(f"API Traceback: {traceback.format_exc()}")
return {"error": f"Analysis failed: {str(e)}"}
def get_model_status():
"""Get current model status"""
return f"""
## πŸ€– Model Status
- **Model Loaded**: {model_loaded}
- **Device**: {device}
- **CUDA Available**: {torch.cuda.is_available()}
- **Model Object**: {type(model).__name__ if model else 'None'}
- **Processor Object**: {type(processor).__name__ if processor else 'None'}
- **PyTorch Version**: {torch.__version__}
## πŸ“‹ Model Configuration
- **Base Model**: google/paligemma-3b-mix-448
- **Medical Adapter**: mychen76/paligemma-3b-mix-448-med_30k-ct-brain
- **Model Type**: PEFT/LoRA Fine-tuned
## ⚠️ Requirements
- HuggingFace account with accepted license for PaliGemma
- HuggingFace token authentication
- PEFT library for adapter loading
"""
# Load model at startup
logger.info("Initializing Brain CT Analyzer with PEFT (Colab Style)...")
load_success = load_model()
if load_success:
logger.info("Model loaded successfully!")
else:
logger.error("Failed to load model!")
# Create Gradio interface
with gr.Blocks(title="Brain CT Analyzer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🧠 Brain CT Analyzer
Upload a brain CT scan image for AI-powered analysis. This tool uses the PaliGemma medical model
with specialized medical fine-tuning to provide preliminary findings.
**⚠️ Important:** This is for educational/research purposes only. Always consult qualified medical professionals.
**πŸ”‘ Requirements:** This model requires accepting Google's PaliGemma license and HuggingFace authentication.
""")
# Model status section
with gr.Accordion("πŸ”§ Model Status", open=not model_loaded):
status_output = gr.Markdown(value=get_model_status())
refresh_btn = gr.Button("πŸ”„ Refresh Status")
refresh_btn.click(fn=get_model_status, outputs=status_output)
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
label="Upload Brain CT Scan",
type="pil",
height=400
)
with gr.Group():
patient_name = gr.Textbox(
label="Patient Name (Optional)",
placeholder="Enter patient name"
)
patient_age = gr.Textbox(
label="Patient Age (Optional)",
placeholder="Enter patient age"
)
symptoms = gr.Textbox(
label="Symptoms (Optional)",
placeholder="Describe symptoms",
lines=3
)
analyze_btn = gr.Button(
"πŸ” Analyze Brain Scan",
variant="primary",
size="lg",
interactive=model_loaded
)
with gr.Column(scale=1):
result_output = gr.Markdown(
label="Analysis Results",
value="Upload an image and click 'Analyze Brain Scan' to see results." if model_loaded else "⚠️ Model not loaded. Check status above and ensure license acceptance."
)
# API endpoint simulation
with gr.Accordion("πŸ”Œ API Response (for developers)", open=False):
api_output = gr.JSON(label="API Response Format")
# Test function for debugging
def test_function():
logger.info("=== TEST BUTTON CLICKED ===")
return f"βœ… Test button works! Model loaded: {model_loaded}"
# Add test button for debugging
with gr.Row():
test_btn = gr.Button("πŸ§ͺ Test Button (Debug)", variant="secondary")
test_output = gr.Textbox(label="Test Output", visible=True)
test_btn.click(fn=test_function, outputs=test_output)
# Event handlers - ALWAYS attach, let the function handle the logic
analyze_btn.click(
fn=analyze_brain_scan,
inputs=[image_input, patient_name, patient_age, symptoms],
outputs=result_output
)
analyze_btn.click(
fn=create_api_response,
inputs=[image_input, patient_name, patient_age, symptoms],
outputs=api_output
)
# Instructions
gr.Markdown("""
## πŸ“‹ Usage Instructions:
1. **Accept License**: Go to [google/paligemma-3b-mix-448](https://huggingface.co/google/paligemma-3b-mix-448) and accept the license
2. **Authenticate**: Login with `huggingface-cli login` using your token
3. Upload a brain CT scan image (JPEG or PNG)
4. Optionally fill in patient information
5. Click "Analyze Brain Scan" to get AI findings
6. Review the results in the output panel
## πŸ”— Integration:
This interface can be integrated with your medical app using the Gradio API.
## βœ… Based on Working Colab Code:
This version uses PEFT to load the medical fine-tuned adapter on top of the base PaliGemma model,
exactly matching your working Google Colab setup.
""")
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)