File size: 9,319 Bytes
699c62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1502c
699c62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1502c
699c62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5931307
 
 
 
 
 
699c62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import gradio as gr
import plotly

# %% ../nbs/00_benchmark.ipynb 5
import torch
import time
from codecarbon import OfflineEmissionsTracker
import numpy as np
import os
from thop import profile, clever_format
from tqdm.notebook import tqdm
from torchprofile import profile_macs

# %% ../nbs/00_benchmark.ipynb 7
def get_model_size(model, temp_path="temp_model.pth"):
    torch.save(model.state_dict(), temp_path)
    model_size = os.path.getsize(temp_path)
    os.remove(temp_path)
    
    return model_size

# %% ../nbs/00_benchmark.ipynb 8
def get_num_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


# %% ../nbs/00_benchmark.ipynb 11
@torch.inference_mode()
def evaluate_cpu_speed(model, dummy_input, warmup_rounds=5, test_rounds=20):
    device = torch.device("cpu")
    model.eval()
    model.to(device)
    dummy_input = dummy_input.to(device)
    
    # Warm up CPU
    for _ in range(warmup_rounds):
        _ = model(dummy_input)
    
    # Measure Latency
    latencies = []
    for _ in range(test_rounds):
        start_time = time.perf_counter()
        _ = model(dummy_input)
        end_time = time.perf_counter()
        latencies.append(end_time - start_time)
    
    latencies = np.array(latencies) * 1000  # Convert to milliseconds
    mean_latency = np.mean(latencies)
    std_latency = np.std(latencies)

    # Measure Throughput
    throughput = dummy_input.size(0) * 1000 / mean_latency  # Inferences per second

    return mean_latency, std_latency, throughput

# %% ../nbs/00_benchmark.ipynb 13
@torch.inference_mode()
def get_model_macs(model, inputs) -> int:
    return profile_macs(model, inputs)


# %% ../nbs/00_benchmark.ipynb 16
@torch.inference_mode()
def evaluate_emissions(model, dummy_input, warmup_rounds=5, test_rounds=20):
    device = torch.device("cpu")
    model.eval()
    model.to(device)
    dummy_input = dummy_input.to(device)

    # Warm up GPU
    for _ in range(warmup_rounds):
        _ = model(dummy_input)
    
    # Measure Latency
    tracker = OfflineEmissionsTracker(country_iso_code="USA")
    tracker.start()
    for _ in range(test_rounds):
        _ = model(dummy_input)
    tracker.stop()
    total_emissions = tracker.final_emissions
    total_energy_consumed = tracker.final_emissions_data.energy_consumed
    
    # Calculate average emissions and energy consumption per inference
    average_emissions_per_inference = total_emissions / test_rounds
    average_energy_per_inference = total_energy_consumed / test_rounds
    
    return average_emissions_per_inference, average_energy_per_inference

# %% ../nbs/00_benchmark.ipynb 18
@torch.inference_mode()
def benchmark(model, dummy_input):
    # Model Size
    print('disk size')
    disk_size = get_model_size(model)
    #num_parameters = get_num_parameters(model)
    
    # CPU Speed
    print('cpu speed')
    cpu_latency, cpu_std_latency, cpu_throughput = evaluate_cpu_speed(model, dummy_input)
    
    # Model MACs
    #macs = get_model_macs(model, dummy_input)
    print('macs')
    macs, params = profile(model, inputs=(dummy_input, ))
    macs, num_parameters = clever_format([macs, params], "%.3f")

    print('emissions')
    # Emissions
    avg_emissions, avg_energy = evaluate_emissions(model, dummy_input)
    
    # Print results
    print(f"Model Size: {disk_size / 1e6:.2f} MB (disk), {num_parameters} parameters")
    print(f"CPU Latency: {cpu_latency:.3f} ms (± {cpu_std_latency:.3f} ms)")
    print(f"CPU Throughput: {cpu_throughput:.2f} inferences/sec")
    print(f"Model MACs: {macs}")
    print(f"Average Carbon Emissions per Inference: {avg_emissions*1e3:.6f} gCO2e")
    print(f"Average Energy Consumption per Inference: {avg_energy*1e3:.6f} Wh")

    return {

        'disk_size': disk_size,
        'num_parameters': num_parameters, 
        'cpu_latency': cpu_latency,
        'cpu_throughput': cpu_throughput,
        'macs': macs, 
        'avg_emissions': avg_emissions, 
        'avg_energy': avg_energy
        
    }
def parse_metric_value(value_str):
    """Convert string values with units (M, G) to float"""
    if isinstance(value_str, (int, float)):
        return float(value_str)
    
    value_str = str(value_str)
    if 'G' in value_str:
        return float(value_str.replace('G', '')) * 1000  # Convert G to M
    elif 'M' in value_str:
        return float(value_str.replace('M', ''))  # Keep in M
    elif 'K' in value_str:
        return float(value_str.replace('K', '')) / 1000  # Convert K to M
    else:
        return float(value_str)

def create_radar_plot(benchmark_results):
    import plotly.graph_objects as go
    
    # Define metrics with icons, hover text format, and units
    metrics = {
        '💾': {  # Storage icon
            'value': benchmark_results['disk_size'] / 1e6,
            'hover_format': 'Model Size: {:.2f} MB',
            'unit': 'MB'
        },
        '🧮': {  # Calculator icon for parameters
            'value': parse_metric_value(benchmark_results['num_parameters']),
            'hover_format': 'Parameters: {:.2f}M',
            'unit': 'M'
        },
        '⏱️': {  # Clock icon for latency
            'value': benchmark_results['cpu_latency'],
            'hover_format': 'Latency: {:.2f} ms',
            'unit': 'ms'
        },
        '⚡': {  # Lightning bolt for MACs
            'value': parse_metric_value(benchmark_results['macs']),
            'hover_format': 'MACs: {:.2f}G',
            'unit': 'G'
        },
        '🔋': {  # Battery icon for energy
            'value': benchmark_results['avg_energy'] * 1e6,
            'hover_format': 'Energy: {:.3f} mWh',
            'unit': 'mWh'
        }
    }
    
    # Find min and max values for each metric
    reference_values = {
        '💾': {'min': 0, 'max': max(metrics['💾']['value'], 1000)},    # Model size (MB)
        '🧮': {'min': 0, 'max': max(metrics['🧮']['value'], 50)},     # Parameters (M)
        '⏱️': {'min': 0, 'max': max(metrics['⏱️']['value'], 200)},    # Latency (ms)
        '⚡': {'min': 0, 'max': max(metrics['⚡']['value'], 5000)},      # MACs (G)
        '🔋': {'min': 0, 'max': max(metrics['🔋']['value'], 10)}       # Energy (mWh)
    }
    
    # Normalize values and create hover text
    normalized_values = []
    hover_texts = []
    labels = []
    
    for icon, metric in metrics.items():
        # Min-max normalization
        normalized_value = (metric['value'] - reference_values[icon]['min']) / \
                         (reference_values[icon]['max'] - reference_values[icon]['min'])
        normalized_values.append(normalized_value)
        
        # Create hover text with actual value
        hover_texts.append(metric['hover_format'].format(metric['value']))
        labels.append(icon)
    
    # Add first values again to close the polygon
    normalized_values.append(normalized_values[0])
    hover_texts.append(hover_texts[0])
    labels.append(labels[0])
    
    fig = go.Figure()
    
    fig.add_trace(go.Scatterpolar(
        r=normalized_values,
        theta=labels,
        fill='toself',
        name='Model Metrics',
        hovertext=hover_texts,
        hoverinfo='text',
        line=dict(color='#FF8C00'),  # Bright orange color
        fillcolor='rgba(255, 140, 0, 0.3)'  # Semi-transparent orange
    ))
    
    fig.update_layout(
        polar=dict(
            radialaxis=dict(
                visible=True,
                range=[0, 1],
                showticklabels=False,  # Hide radial axis labels
                gridcolor='rgba(128, 128, 128, 0.5)',  # Semi-transparent grey grid lines
                linecolor='rgba(128, 128, 128, 0.5)'   # Semi-transparent grey axis lines
            ),
            angularaxis=dict(
                tickfont=dict(size=24),  # Icon labels
                gridcolor='rgba(128, 128, 128, 0.5)'  # Semi-transparent grey grid lines
            ),
            bgcolor='rgba(0,0,0,0)'  # Transparent background
        ),
        showlegend=False,

        margin=dict(t=100, b=100, l=100, r=100),
        paper_bgcolor='rgba(0,0,0,0)',  # Transparent background
        plot_bgcolor='rgba(0,0,0,0)'    # Transparent background
    )
    
    return fig

# Rest of the code remains the same

def benchmark_interface(model_name):
    import torchvision.models as models
    
    model_mapping = {
        'ResNet18': models.resnet18(pretrained=False),
        'ResNet50': models.resnet50(pretrained=False),
        'MobileNetV2': models.mobilenet_v2(pretrained=False),
        'EfficientNet-B0': models.efficientnet_b0(pretrained=False),
        'VGG16': models.vgg16(pretrained=False),
        'DenseNet121': models.densenet121(pretrained=False)
    }
    
    model = model_mapping[model_name]
    dummy_input = torch.randn(1, 3, 224, 224)
    
    # Run benchmark
    results = benchmark(model, dummy_input)
    
    # Create radar plot
    plot = create_radar_plot(results)
    
    return plot

available_models = ['ResNet18', 'ResNet50', 'MobileNetV2', 'EfficientNet-B0', 'VGG16', 'DenseNet121']

iface = gr.Interface(
    fn=benchmark_interface,
    inputs=[
        gr.Dropdown(choices=available_models, label="Select Model", value='ResNet18')
    ],
    outputs=[
        gr.Plot(label="Model Benchmark Results")
    ],
)

iface.launch()