File size: 9,319 Bytes
699c62d 6f1502c 699c62d 6f1502c 699c62d 5931307 699c62d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import gradio as gr
import plotly
# %% ../nbs/00_benchmark.ipynb 5
import torch
import time
from codecarbon import OfflineEmissionsTracker
import numpy as np
import os
from thop import profile, clever_format
from tqdm.notebook import tqdm
from torchprofile import profile_macs
# %% ../nbs/00_benchmark.ipynb 7
def get_model_size(model, temp_path="temp_model.pth"):
torch.save(model.state_dict(), temp_path)
model_size = os.path.getsize(temp_path)
os.remove(temp_path)
return model_size
# %% ../nbs/00_benchmark.ipynb 8
def get_num_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
# %% ../nbs/00_benchmark.ipynb 11
@torch.inference_mode()
def evaluate_cpu_speed(model, dummy_input, warmup_rounds=5, test_rounds=20):
device = torch.device("cpu")
model.eval()
model.to(device)
dummy_input = dummy_input.to(device)
# Warm up CPU
for _ in range(warmup_rounds):
_ = model(dummy_input)
# Measure Latency
latencies = []
for _ in range(test_rounds):
start_time = time.perf_counter()
_ = model(dummy_input)
end_time = time.perf_counter()
latencies.append(end_time - start_time)
latencies = np.array(latencies) * 1000 # Convert to milliseconds
mean_latency = np.mean(latencies)
std_latency = np.std(latencies)
# Measure Throughput
throughput = dummy_input.size(0) * 1000 / mean_latency # Inferences per second
return mean_latency, std_latency, throughput
# %% ../nbs/00_benchmark.ipynb 13
@torch.inference_mode()
def get_model_macs(model, inputs) -> int:
return profile_macs(model, inputs)
# %% ../nbs/00_benchmark.ipynb 16
@torch.inference_mode()
def evaluate_emissions(model, dummy_input, warmup_rounds=5, test_rounds=20):
device = torch.device("cpu")
model.eval()
model.to(device)
dummy_input = dummy_input.to(device)
# Warm up GPU
for _ in range(warmup_rounds):
_ = model(dummy_input)
# Measure Latency
tracker = OfflineEmissionsTracker(country_iso_code="USA")
tracker.start()
for _ in range(test_rounds):
_ = model(dummy_input)
tracker.stop()
total_emissions = tracker.final_emissions
total_energy_consumed = tracker.final_emissions_data.energy_consumed
# Calculate average emissions and energy consumption per inference
average_emissions_per_inference = total_emissions / test_rounds
average_energy_per_inference = total_energy_consumed / test_rounds
return average_emissions_per_inference, average_energy_per_inference
# %% ../nbs/00_benchmark.ipynb 18
@torch.inference_mode()
def benchmark(model, dummy_input):
# Model Size
print('disk size')
disk_size = get_model_size(model)
#num_parameters = get_num_parameters(model)
# CPU Speed
print('cpu speed')
cpu_latency, cpu_std_latency, cpu_throughput = evaluate_cpu_speed(model, dummy_input)
# Model MACs
#macs = get_model_macs(model, dummy_input)
print('macs')
macs, params = profile(model, inputs=(dummy_input, ))
macs, num_parameters = clever_format([macs, params], "%.3f")
print('emissions')
# Emissions
avg_emissions, avg_energy = evaluate_emissions(model, dummy_input)
# Print results
print(f"Model Size: {disk_size / 1e6:.2f} MB (disk), {num_parameters} parameters")
print(f"CPU Latency: {cpu_latency:.3f} ms (± {cpu_std_latency:.3f} ms)")
print(f"CPU Throughput: {cpu_throughput:.2f} inferences/sec")
print(f"Model MACs: {macs}")
print(f"Average Carbon Emissions per Inference: {avg_emissions*1e3:.6f} gCO2e")
print(f"Average Energy Consumption per Inference: {avg_energy*1e3:.6f} Wh")
return {
'disk_size': disk_size,
'num_parameters': num_parameters,
'cpu_latency': cpu_latency,
'cpu_throughput': cpu_throughput,
'macs': macs,
'avg_emissions': avg_emissions,
'avg_energy': avg_energy
}
def parse_metric_value(value_str):
"""Convert string values with units (M, G) to float"""
if isinstance(value_str, (int, float)):
return float(value_str)
value_str = str(value_str)
if 'G' in value_str:
return float(value_str.replace('G', '')) * 1000 # Convert G to M
elif 'M' in value_str:
return float(value_str.replace('M', '')) # Keep in M
elif 'K' in value_str:
return float(value_str.replace('K', '')) / 1000 # Convert K to M
else:
return float(value_str)
def create_radar_plot(benchmark_results):
import plotly.graph_objects as go
# Define metrics with icons, hover text format, and units
metrics = {
'💾': { # Storage icon
'value': benchmark_results['disk_size'] / 1e6,
'hover_format': 'Model Size: {:.2f} MB',
'unit': 'MB'
},
'🧮': { # Calculator icon for parameters
'value': parse_metric_value(benchmark_results['num_parameters']),
'hover_format': 'Parameters: {:.2f}M',
'unit': 'M'
},
'⏱️': { # Clock icon for latency
'value': benchmark_results['cpu_latency'],
'hover_format': 'Latency: {:.2f} ms',
'unit': 'ms'
},
'⚡': { # Lightning bolt for MACs
'value': parse_metric_value(benchmark_results['macs']),
'hover_format': 'MACs: {:.2f}G',
'unit': 'G'
},
'🔋': { # Battery icon for energy
'value': benchmark_results['avg_energy'] * 1e6,
'hover_format': 'Energy: {:.3f} mWh',
'unit': 'mWh'
}
}
# Find min and max values for each metric
reference_values = {
'💾': {'min': 0, 'max': max(metrics['💾']['value'], 1000)}, # Model size (MB)
'🧮': {'min': 0, 'max': max(metrics['🧮']['value'], 50)}, # Parameters (M)
'⏱️': {'min': 0, 'max': max(metrics['⏱️']['value'], 200)}, # Latency (ms)
'⚡': {'min': 0, 'max': max(metrics['⚡']['value'], 5000)}, # MACs (G)
'🔋': {'min': 0, 'max': max(metrics['🔋']['value'], 10)} # Energy (mWh)
}
# Normalize values and create hover text
normalized_values = []
hover_texts = []
labels = []
for icon, metric in metrics.items():
# Min-max normalization
normalized_value = (metric['value'] - reference_values[icon]['min']) / \
(reference_values[icon]['max'] - reference_values[icon]['min'])
normalized_values.append(normalized_value)
# Create hover text with actual value
hover_texts.append(metric['hover_format'].format(metric['value']))
labels.append(icon)
# Add first values again to close the polygon
normalized_values.append(normalized_values[0])
hover_texts.append(hover_texts[0])
labels.append(labels[0])
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=normalized_values,
theta=labels,
fill='toself',
name='Model Metrics',
hovertext=hover_texts,
hoverinfo='text',
line=dict(color='#FF8C00'), # Bright orange color
fillcolor='rgba(255, 140, 0, 0.3)' # Semi-transparent orange
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1],
showticklabels=False, # Hide radial axis labels
gridcolor='rgba(128, 128, 128, 0.5)', # Semi-transparent grey grid lines
linecolor='rgba(128, 128, 128, 0.5)' # Semi-transparent grey axis lines
),
angularaxis=dict(
tickfont=dict(size=24), # Icon labels
gridcolor='rgba(128, 128, 128, 0.5)' # Semi-transparent grey grid lines
),
bgcolor='rgba(0,0,0,0)' # Transparent background
),
showlegend=False,
margin=dict(t=100, b=100, l=100, r=100),
paper_bgcolor='rgba(0,0,0,0)', # Transparent background
plot_bgcolor='rgba(0,0,0,0)' # Transparent background
)
return fig
# Rest of the code remains the same
def benchmark_interface(model_name):
import torchvision.models as models
model_mapping = {
'ResNet18': models.resnet18(pretrained=False),
'ResNet50': models.resnet50(pretrained=False),
'MobileNetV2': models.mobilenet_v2(pretrained=False),
'EfficientNet-B0': models.efficientnet_b0(pretrained=False),
'VGG16': models.vgg16(pretrained=False),
'DenseNet121': models.densenet121(pretrained=False)
}
model = model_mapping[model_name]
dummy_input = torch.randn(1, 3, 224, 224)
# Run benchmark
results = benchmark(model, dummy_input)
# Create radar plot
plot = create_radar_plot(results)
return plot
available_models = ['ResNet18', 'ResNet50', 'MobileNetV2', 'EfficientNet-B0', 'VGG16', 'DenseNet121']
iface = gr.Interface(
fn=benchmark_interface,
inputs=[
gr.Dropdown(choices=available_models, label="Select Model", value='ResNet18')
],
outputs=[
gr.Plot(label="Model Benchmark Results")
],
)
iface.launch() |