Spaces:
Running
Running
update compressor
Browse files- .ipynb_checkpoints/app-checkpoint.py +182 -0
- app.py +2 -12
.ipynb_checkpoints/app-checkpoint.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fasterai
|
2 |
+
from fasterai.sparse.all import *
|
3 |
+
from fasterai.prune.all import *
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
import os
|
7 |
+
from torch.ao.quantization import get_default_qconfig_mapping
|
8 |
+
import torch.ao.quantization.quantize_fx as quantize_fx
|
9 |
+
from torch.ao.quantization.quantize_fx import convert_fx, prepare_fx
|
10 |
+
|
11 |
+
class Quant():
|
12 |
+
def __init__(self, backend="x86"):
|
13 |
+
self.qconfig = get_default_qconfig_mapping(backend)
|
14 |
+
|
15 |
+
def quantize(self, model):
|
16 |
+
x = torch.randn(3, 224, 224)
|
17 |
+
model_prepared = prepare_fx(model.eval(), self.qconfig, x)
|
18 |
+
return convert_fx(model_prepared)
|
19 |
+
|
20 |
+
|
21 |
+
def optimize_model(input_model, sparsity, context, criteria):
|
22 |
+
|
23 |
+
model = torch.load(input_model, weights_only=False)
|
24 |
+
model = model.eval()
|
25 |
+
model = model.to('cpu')
|
26 |
+
sp = Sparsifier(model, 'filter', context, criteria=eval(criteria))
|
27 |
+
sp.sparsify_model(sparsity)
|
28 |
+
sp._clean_buffers()
|
29 |
+
pr = Pruner(model, sparsity, context, criteria=eval(criteria))
|
30 |
+
pr.prune_model()
|
31 |
+
qu = Quant()
|
32 |
+
qu_model = qu.quantize(model)
|
33 |
+
|
34 |
+
comp_path = "./comp_model.pth"
|
35 |
+
|
36 |
+
scripted = torch.jit.script(qu_model)
|
37 |
+
torch.jit.save(scripted, comp_path)
|
38 |
+
#torch.save(qu_model, comp_path)
|
39 |
+
|
40 |
+
return comp_path
|
41 |
+
|
42 |
+
import matplotlib.pyplot as plt
|
43 |
+
import seaborn as sns
|
44 |
+
import io
|
45 |
+
import numpy as np
|
46 |
+
|
47 |
+
def get_model_size(model_path):
|
48 |
+
"""Get model size in MB"""
|
49 |
+
size_bytes = os.path.getsize(model_path)
|
50 |
+
size_mb = size_bytes / (1024 * 1024)
|
51 |
+
return round(size_mb, 2)
|
52 |
+
|
53 |
+
def create_size_comparison_plot(original_size, compressed_size):
|
54 |
+
"""Create a bar plot comparing model sizes"""
|
55 |
+
# Set seaborn style
|
56 |
+
sns.set_style("darkgrid")
|
57 |
+
|
58 |
+
# Create figure with higher DPI for better resolution
|
59 |
+
fig = plt.figure(figsize=(10, 6), dpi=150)
|
60 |
+
|
61 |
+
# Set transparent background
|
62 |
+
fig.patch.set_alpha(0.0)
|
63 |
+
ax = plt.gca()
|
64 |
+
ax.patch.set_alpha(0.0)
|
65 |
+
|
66 |
+
# Plot bars with custom colors and alpha
|
67 |
+
bars = plt.bar(['Original', 'Compressed'],
|
68 |
+
[original_size, compressed_size],
|
69 |
+
color=['#FF6B00', '#FF9F1C'],
|
70 |
+
alpha=0.8,
|
71 |
+
width=0.6)
|
72 |
+
|
73 |
+
# Add size labels on top of bars with improved styling
|
74 |
+
for bar in bars:
|
75 |
+
height = bar.get_height()
|
76 |
+
plt.text(bar.get_x() + bar.get_width()/2., height + (height * 0.01),
|
77 |
+
f'{height:.2f} MB',
|
78 |
+
ha='center', va='bottom',
|
79 |
+
fontsize=11,
|
80 |
+
fontweight='bold',
|
81 |
+
color='white')
|
82 |
+
|
83 |
+
# Calculate compression percentage
|
84 |
+
compression_ratio = ((original_size - compressed_size) / original_size) * 100
|
85 |
+
|
86 |
+
# Customize title and labels with better visibility
|
87 |
+
plt.title(f'Model Size Comparison\nCompression: {compression_ratio:.1f}%',
|
88 |
+
fontsize=14,
|
89 |
+
fontweight='bold',
|
90 |
+
pad=20,
|
91 |
+
color='white')
|
92 |
+
|
93 |
+
plt.xlabel('Model Version',
|
94 |
+
fontsize=12,
|
95 |
+
fontweight='bold',
|
96 |
+
labelpad=10,
|
97 |
+
color='white')
|
98 |
+
|
99 |
+
plt.ylabel('Size (MB)',
|
100 |
+
fontsize=12,
|
101 |
+
fontweight='bold',
|
102 |
+
labelpad=10,
|
103 |
+
color='white')
|
104 |
+
|
105 |
+
# Customize grid
|
106 |
+
ax.grid(alpha=0.2, color='gray')
|
107 |
+
|
108 |
+
# Remove top and right spines
|
109 |
+
sns.despine()
|
110 |
+
|
111 |
+
# Set y-axis limits with some padding
|
112 |
+
max_value = max(original_size, compressed_size)
|
113 |
+
plt.ylim(0, max_value * 1.2)
|
114 |
+
|
115 |
+
# Add more y-axis ticks
|
116 |
+
plt.yticks(np.linspace(0, max_value * 1.2, 10))
|
117 |
+
|
118 |
+
# Make tick labels white
|
119 |
+
ax.tick_params(colors='white')
|
120 |
+
for spine in ax.spines.values():
|
121 |
+
spine.set_color('white')
|
122 |
+
|
123 |
+
# Format axes with white text
|
124 |
+
ax.xaxis.label.set_color('white')
|
125 |
+
ax.yaxis.label.set_color('white')
|
126 |
+
ax.tick_params(axis='x', colors='white')
|
127 |
+
ax.tick_params(axis='y', colors='white')
|
128 |
+
|
129 |
+
# Format y-axis tick labels
|
130 |
+
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, p: f'{x:.1f}'))
|
131 |
+
|
132 |
+
# Adjust layout to prevent label cutoff
|
133 |
+
plt.tight_layout()
|
134 |
+
|
135 |
+
return fig
|
136 |
+
|
137 |
+
def main_interface(model_name, sparsity, action):
|
138 |
+
import torchvision.models as models
|
139 |
+
|
140 |
+
model_mapping = {
|
141 |
+
'ResNet18': models.resnet18(pretrained=False),
|
142 |
+
'ResNet50': models.resnet50(pretrained=False),
|
143 |
+
'MobileNetV2': models.mobilenet_v2(pretrained=False),
|
144 |
+
'EfficientNet-B0': models.efficientnet_b0(pretrained=False),
|
145 |
+
'VGG16': models.vgg16(pretrained=False),
|
146 |
+
'DenseNet121': models.densenet121(pretrained=False)
|
147 |
+
}
|
148 |
+
|
149 |
+
model = model_mapping[model_name]
|
150 |
+
|
151 |
+
# Save model temporarily
|
152 |
+
temp_path = "./temp_model.pth"
|
153 |
+
torch.save(model, temp_path)
|
154 |
+
|
155 |
+
original_size = get_model_size(temp_path)
|
156 |
+
|
157 |
+
try:
|
158 |
+
compressed_path = optimize_model(temp_path, sparsity, 'local', "large_final")
|
159 |
+
compressed_size = get_model_size(compressed_path)
|
160 |
+
size_plot = create_size_comparison_plot(original_size, compressed_size)
|
161 |
+
|
162 |
+
return compressed_path, size_plot
|
163 |
+
finally:
|
164 |
+
# Clean up temporary file
|
165 |
+
if os.path.exists(temp_path):
|
166 |
+
os.remove(temp_path)
|
167 |
+
|
168 |
+
|
169 |
+
available_models = ['ResNet18', 'ResNet50', 'MobileNetV2', 'EfficientNet-B0', 'VGG16', 'DenseNet121']
|
170 |
+
|
171 |
+
iface = gr.Interface(
|
172 |
+
fn=main_interface,
|
173 |
+
inputs=[
|
174 |
+
gr.Dropdown(choices=available_models, label="Select Model", value='ResNet18'),
|
175 |
+
gr.Slider(label="Compression Level", minimum=0, maximum=100, value=50),
|
176 |
+
],
|
177 |
+
outputs=[
|
178 |
+
gr.Plot(label="Size Comparison") # Changed from gr.Image to gr.Plot
|
179 |
+
],
|
180 |
+
)
|
181 |
+
|
182 |
+
iface.launch()
|
app.py
CHANGED
@@ -20,7 +20,7 @@ class Quant():
|
|
20 |
|
21 |
def optimize_model(input_model, sparsity, context, criteria):
|
22 |
|
23 |
-
model = torch.load(input_model)
|
24 |
model = model.eval()
|
25 |
model = model.to('cpu')
|
26 |
sp = Sparsifier(model, 'filter', context, criteria=eval(criteria))
|
@@ -155,15 +155,7 @@ def main_interface(model_name, sparsity, action):
|
|
155 |
original_size = get_model_size(temp_path)
|
156 |
|
157 |
try:
|
158 |
-
|
159 |
-
compressed_path = optimize_model(temp_path, sparsity, 'local', "large_final")
|
160 |
-
elif action == 'Size':
|
161 |
-
compressed_path = optimize_model(temp_path, sparsity, 'global', "large_final")
|
162 |
-
elif action == 'Consumption':
|
163 |
-
compressed_path = optimize_model(temp_path, sparsity, 'local', "random")
|
164 |
-
else:
|
165 |
-
return None, None
|
166 |
-
|
167 |
compressed_size = get_model_size(compressed_path)
|
168 |
size_plot = create_size_comparison_plot(original_size, compressed_size)
|
169 |
|
@@ -181,10 +173,8 @@ iface = gr.Interface(
|
|
181 |
inputs=[
|
182 |
gr.Dropdown(choices=available_models, label="Select Model", value='ResNet18'),
|
183 |
gr.Slider(label="Compression Level", minimum=0, maximum=100, value=50),
|
184 |
-
gr.Radio(["Speed", "Size", "Consumption"], label="Select Action", value="Speed")
|
185 |
],
|
186 |
outputs=[
|
187 |
-
gr.File(label="Download Compressed Model"),
|
188 |
gr.Plot(label="Size Comparison") # Changed from gr.Image to gr.Plot
|
189 |
],
|
190 |
)
|
|
|
20 |
|
21 |
def optimize_model(input_model, sparsity, context, criteria):
|
22 |
|
23 |
+
model = torch.load(input_model, weights_only=False)
|
24 |
model = model.eval()
|
25 |
model = model.to('cpu')
|
26 |
sp = Sparsifier(model, 'filter', context, criteria=eval(criteria))
|
|
|
155 |
original_size = get_model_size(temp_path)
|
156 |
|
157 |
try:
|
158 |
+
compressed_path = optimize_model(temp_path, sparsity, 'local', "large_final")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
compressed_size = get_model_size(compressed_path)
|
160 |
size_plot = create_size_comparison_plot(original_size, compressed_size)
|
161 |
|
|
|
173 |
inputs=[
|
174 |
gr.Dropdown(choices=available_models, label="Select Model", value='ResNet18'),
|
175 |
gr.Slider(label="Compression Level", minimum=0, maximum=100, value=50),
|
|
|
176 |
],
|
177 |
outputs=[
|
|
|
178 |
gr.Plot(label="Size Comparison") # Changed from gr.Image to gr.Plot
|
179 |
],
|
180 |
)
|