Spaces:
Sleeping
Sleeping
File size: 34,751 Bytes
343474c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
import os
import subprocess
import sys
import pkg_resources
import time
import tempfile
import numpy as np
import warnings
from pathlib import Path
warnings.filterwarnings("ignore")
def install_package(package, version=None):
package_spec = f"{package}=={version}" if version else package
print(f"Installing {package_spec}...")
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
except subprocess.CalledProcessError as e:
print(f"Failed to install {package_spec}: {e}")
raise
# Required packages (add version pins if needed)
required_packages = {
"gradio": None,
"torch": None,
"torchaudio": None,
"transformers": None,
"librosa": None,
"scipy": None,
"matplotlib": None,
"pydub": None,
"plotly": None
}
installed_packages = {pkg.key for pkg in pkg_resources.working_set}
for package, version in required_packages.items():
if package not in installed_packages:
install_package(package, version)
# Now import necessary packages
import gradio as gr
import torch
import torchaudio
import librosa
import matplotlib
matplotlib.use('Agg') # non-interactive backend for any fallback
from pydub import AudioSegment
import scipy
import io
from transformers import pipeline, AutoFeatureExtractor, AutoModelForAudioClassification
import plotly.graph_objects as go
# Define emotion labels, tone mapping, and descriptions
EMOTION_DESCRIPTIONS = {
"angry": "Voice shows irritation, hostility, or aggression. Tone may be harsh, loud, or intense.",
"disgust": "Voice expresses revulsion or strong disapproval. Tone may sound repulsed or contemptuous.",
"fear": "Voice reveals anxiety, worry, or dread. Tone may be shaky, hesitant, or tense.",
"happy": "Voice conveys joy, pleasure, or positive emotions. Tone is often bright, energetic, and uplifted.",
"neutral": "Voice lacks strong emotional signals. Tone is even, moderate, and relatively flat.",
"sad": "Voice expresses sorrow, unhappiness, or melancholy. Tone may be quiet, heavy, or subdued.",
"surprise": "Voice reflects unexpected reactions. Tone may be higher pitched, quick, or energetic."
}
# If you wish to group emotions by tone, you can do so here:
TONE_MAPPING = {
"positive": ["happy", "surprise"],
"neutral": ["neutral"],
"negative": ["angry", "sad", "fear", "disgust"]
}
# Global variable for the emotion classifier
audio_emotion_classifier = None
def load_emotion_model():
"""Load and cache the speech emotion classification model."""
global audio_emotion_classifier
if audio_emotion_classifier is None:
try:
print("Loading emotion classification model...")
model_name = "superb/hubert-large-superb-er"
audio_emotion_classifier = pipeline("audio-classification", model=model_name)
print("Emotion classification model loaded successfully")
return True
except Exception as e:
print(f"Error loading emotion model: {e}")
return False
return True
def convert_audio_to_wav(audio_file):
"""Convert uploaded audio to WAV format."""
try:
audio = AudioSegment.from_file(audio_file)
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_wav:
wav_path = temp_wav.name
audio.export(wav_path, format="wav")
return wav_path
except Exception as e:
print(f"Error converting audio: {e}")
return None
def analyze_voice_tone(audio_file):
"""
Analyze the tone characteristics of the voice using more robust measurements.
Includes pitch variation, energy dynamics, and spectral features.
"""
try:
audio_data, sample_rate = librosa.load(audio_file, sr=16000)
# 1. Basic audio features
audio_duration = librosa.get_duration(y=audio_data, sr=sample_rate)
if audio_duration < 1.0: # Too short for reliable analysis
return "Audio too short for reliable tone analysis. Please provide at least 3 seconds."
# 2. Pitch analysis with more robust handling
f0, voiced_flag, voiced_prob = librosa.pyin(
audio_data,
fmin=librosa.note_to_hz('C2'),
fmax=librosa. note_to_hz('C7'),
sr=sample_rate
)
# Filter out NaN values and get valid pitch points
valid_f0 = f0[~np.isnan(f0)]
# If no pitch detected, may be noise or silence
if len(valid_f0) < 10:
return "**Voice Tone Analysis:** Unable to detect sufficient pitched content for analysis. The audio may contain primarily noise, silence, or non-speech sounds."
# 3. Calculate improved statistics
mean_pitch = np.mean(valid_f0)
median_pitch = np.median(valid_f0)
std_pitch = np.std(valid_f0)
pitch_range = np.percentile(valid_f0, 95) - np.percentile(valid_f0, 5)
# 4. Energy/volume dynamics
rms_energy = librosa.feature.rms(y=audio_data)[0]
mean_energy = np.mean(rms_energy)
std_energy = np.std(rms_energy)
energy_range = np.percentile(rms_energy, 95) - np.percentile(rms_energy, 5)
# 5. Speaking rate approximation (zero-crossing rate can help estimate this)
zcr = librosa.feature.zero_crossing_rate(audio_data)[0]
mean_zcr = np.mean(zcr)
# 6. Calculate pitch variability relative to the mean (coefficient of variation)
# This gives a better measure than raw std dev
pitch_cv = (std_pitch / mean_pitch) * 100 if mean_pitch > 0 else 0
# 7. Tone classification logic using multiple features
# Define tone characteristics based on combinations of features
tone_class = ""
tone_details = []
# Pitch-based characteristics
if pitch_cv < 5:
tone_class = "Monotone"
tone_details.append("Very little pitch variation - sounds flat and unexpressive")
elif pitch_cv < 12:
tone_class = "Steady"
tone_details.append("Moderate pitch variation - sounds controlled and measured")
elif pitch_cv < 20:
tone_class = "Expressive"
tone_details.append("Good pitch variation - sounds naturally engaging")
else:
tone_class = "Highly Dynamic"
tone_details.append("Strong pitch variation - sounds animated and emphatic")
# Pitch range classification
if mean_pitch > 180:
tone_details.append("Higher pitched voice - may convey excitement or tension")
elif mean_pitch < 120:
tone_details.append("Lower pitched voice - may convey calmness or authority")
else:
tone_details.append("Mid-range pitch - typically perceived as balanced")
# Energy/volume characteristics
energy_cv = (std_energy / mean_energy) * 100 if mean_energy > 0 else 0
if energy_cv < 10:
tone_details.append("Consistent volume - sounds controlled and measured")
elif energy_cv > 30:
tone_details.append("Variable volume - suggests emotional emphasis or expressiveness")
# Speech rate approximation
if mean_zcr > 0.1:
tone_details.append("Faster speech rate - may convey urgency or enthusiasm")
elif mean_zcr < 0.05:
tone_details.append("Slower speech rate - may convey thoughtfulness or hesitation")
# Generate tone summary and interpretation
tone_analysis = f"### Voice Tone Analysis\n\n"
tone_analysis += f"**Primary tone quality:** {tone_class}\n\n"
tone_analysis += "**Tone characteristics:**\n"
for detail in tone_details:
tone_analysis += f"- {detail}\n"
tone_analysis += "\n**Interpretation:**\n"
# Generate interpretation based on the classified tone
if tone_class == "Monotone":
tone_analysis += ("A monotone delivery can create distance and reduce engagement. "
"Consider adding more vocal variety to sound more engaging and authentic.")
elif tone_class == "Steady":
tone_analysis += ("Your steady tone suggests reliability and control. "
"This can be effective in professional settings or when conveying serious information.")
elif tone_class == "Expressive":
tone_analysis += ("Your expressive tone helps maintain listener interest and emphasize key points. "
"This naturally engaging quality helps convey authenticity and conviction.")
else: # Highly Dynamic
tone_analysis += ("Your highly dynamic vocal style conveys strong emotion and energy. "
"This can be powerful for storytelling and persuasion, though in some contexts "
"a more measured approach might be appropriate.")
return tone_analysis
except Exception as e:
print(f"Error in tone analysis: {e}")
return "Tone analysis unavailable due to an error processing the audio."
def analyze_audio_emotions(audio_file, progress=gr.Progress(), chunk_duration=2):
"""
Analyze speech emotions in short chunks,
building a timeline of confidence for each emotion.
Returns a Plotly figure, summary text, detailed results.
"""
if not load_emotion_model():
return None, "Failed to load emotion classifier.", None
# Use existing WAV if possible, else convert
if audio_file.endswith(".wav"):
audio_path = audio_file
else:
audio_path = convert_audio_to_wav(audio_file)
if not audio_path:
return None, "Could not process audio file", None
try:
# Load with librosa
audio_data, sample_rate = librosa.load(audio_path, sr=16000)
duration = len(audio_data) / sample_rate
# Use shorter chunks for more granular analysis
chunk_samples = int(chunk_duration * sample_rate)
num_chunks = max(1, int(np.ceil(len(audio_data) / chunk_samples)))
all_emotions = []
time_points = []
# For each chunk, run emotion classification
for i in range(num_chunks):
progress((i + 1) / num_chunks, "Analyzing audio emotions...")
start_idx = i * chunk_samples
end_idx = min(start_idx + chunk_samples, len(audio_data))
chunk = audio_data[start_idx:end_idx]
# Skip very short chunks
if len(chunk) < 0.5 * sample_rate:
continue
# Write chunk to temp WAV
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_chunk:
chunk_path = temp_chunk.name
scipy.io.wavfile.write(chunk_path, sample_rate, (chunk * 32767).astype(np.int16))
# Classify - extract top-n predictions for each chunk
raw_results = audio_emotion_classifier(chunk_path, top_k=7) # Get all 7 emotions
os.unlink(chunk_path)
all_emotions.append(raw_results)
time_points.append((start_idx / sample_rate, end_idx / sample_rate))
# Skip if no valid emotions detected
if not all_emotions:
return None, "No speech detected in the audio.", None
# Build Plotly chart with improved styling
fig = build_plotly_line_chart(all_emotions, time_points, duration)
# Build summary and detailed results
summary_text = generate_emotion_summary(all_emotions)
detailed_results = build_detailed_results(all_emotions, time_points)
return fig, summary_text, detailed_results
except Exception as e:
import traceback
traceback.print_exc()
return None, f"Error analyzing audio: {str(e)}", None
def smooth_data(data, window_size=3):
"""Apply a moving average smoothing to the data"""
smoothed = np.convolve(data, np.ones(window_size)/window_size, mode='valid')
# Add back points that were lost in the convolution
padding = len(data) - len(smoothed)
if padding > 0:
# Add padding at the beginning
padding_front = padding // 2
padding_back = padding - padding_front
# Use the first/last values for padding
front_padding = [smoothed[0]] * padding_front
back_padding = [smoothed[-1]] * padding_back
smoothed = np.concatenate([front_padding, smoothed, back_padding])
return smoothed
def build_plotly_line_chart(all_emotions, time_points, duration):
"""
Create an improved Plotly line chart with toggles for each emotion.
Shows all emotions for each time point rather than just the top one.
"""
emotion_labels = list(EMOTION_DESCRIPTIONS.keys())
# Custom color scheme for emotions
colors = {
"angry": "#E53935", # Red
"disgust": "#8E24AA", # Purple
"fear": "#7B1FA2", # Deep Purple
"happy": "#FFC107", # Amber/Yellow
"neutral": "#78909C", # Blue Grey
"sad": "#1E88E5", # Blue
"surprise": "#43A047" # Green
}
# Prepare data structure for all emotions
emotion_data = {label: [] for label in emotion_labels}
timeline_times = [(start + end) / 2 for start, end in time_points]
# Process emotion scores - ensure all emotions have values
for chunk_emotions in all_emotions:
# Create a mapping of label to score for this chunk
scores = {item["label"]: item["score"] for item in chunk_emotions}
# Ensure all emotion labels have a value (default to 0.0)
for label in emotion_labels:
emotion_data[label].append(scores.get(label, 0.0))
# Smooth the data
for label in emotion_labels:
if len(emotion_data[label]) > 2:
emotion_data[label] = smooth_data(emotion_data[label])
# Build the chart
fig = go.Figure()
# Add traces for each emotion
for label in emotion_labels:
fig.add_trace(
go.Scatter(
x=timeline_times,
y=emotion_data[label],
mode='lines',
name=label.capitalize(),
line=dict(
color=colors.get(label, None),
width=3,
shape='spline', # Curved lines
smoothing=1.3
),
hovertemplate=f'{label.capitalize()}: %{{y:.2f}}<extra></extra>',
)
)
# Add markers for dominant emotion at each point
dominant_markers_x = []
dominant_markers_y = []
dominant_markers_text = []
dominant_markers_color = []
for i, time in enumerate(timeline_times):
scores = {label: emotion_data[label][i] for label in emotion_labels}
dominant = max(scores.items(), key=lambda x: x[1])
dominant_markers_x.append(time)
dominant_markers_y.append(dominant[1])
dominant_markers_text.append(f"{dominant[0].capitalize()}: {dominant[1]:.2f}")
dominant_markers_color.append(colors.get(dominant[0], "#000000"))
fig.add_trace(
go.Scatter(
x=dominant_markers_x,
y=dominant_markers_y,
mode='markers',
marker=dict(
size=10,
color=dominant_markers_color,
line=dict(width=2, color='white')
),
name="Dominant Emotion",
text=dominant_markers_text,
hoverinfo="text",
hovertemplate='%{text}<extra></extra>'
)
)
# Add area chart for better visualization
for label in emotion_labels:
fig.add_trace(
go.Scatter(
x=timeline_times,
y=emotion_data[label],
mode='none',
name=f"{label.capitalize()} Area",
fill='tozeroy',
fillcolor=f"rgba{tuple(list(int(colors.get(label, '#000000').lstrip('#')[i:i+2], 16) for i in (0, 2, 4)) + [0.1])}",
showlegend=False,
hoverinfo='skip'
)
)
# Improve layout
fig.update_layout(
title={
'text': "Voice Emotion Analysis Over Time",
'font': {'size': 22, 'family': 'Arial, sans-serif'}
},
xaxis_title="Time (seconds)",
yaxis_title="Confidence Score",
yaxis=dict(
range=[0, 1.0],
showgrid=True,
gridcolor='rgba(230, 230, 230, 0.8)'
),
xaxis=dict(
showgrid=True,
gridcolor='rgba(230, 230, 230, 0.8)'
),
plot_bgcolor='white',
legend=dict(
bordercolor='rgba(0,0,0,0.1)',
borderwidth=1,
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
),
hovermode='closest',
height=500, # Larger size for better viewing
margin=dict(l=10, r=10, t=80, b=50)
)
return fig
def generate_alternative_chart(all_emotions, time_points):
"""
Create a stacked area chart to better visualize emotion changes over time
"""
emotion_labels = list(EMOTION_DESCRIPTIONS.keys())
# Custom color scheme for emotions - more visible/distinct
colors = {
"angry": "#F44336", # Red
"disgust": "#9C27B0", # Purple
"fear": "#673AB7", # Deep Purple
"happy": "#FFC107", # Amber
"neutral": "#607D8B", # Blue Grey
"sad": "#2196F3", # Blue
"surprise": "#4CAF50" # Green
}
# Prepare timeline points
timeline_times = [(start + end) / 2 for start, end in time_points]
# Prepare data structure for all emotions
emotion_data = {label: [] for label in emotion_labels}
# Process emotion scores - ensure all emotions have values
for chunk_emotions in all_emotions:
# Create a mapping of label to score for this chunk
scores = {item["label"]: item["score"] for item in chunk_emotions}
# Ensure all emotion labels have a value (default to 0.0)
for label in emotion_labels:
emotion_data[label].append(scores.get(label, 0.0))
# Create the stacked area chart
fig = go.Figure()
# Add each emotion as a separate trace
for label in emotion_labels:
fig.add_trace(
go.Scatter(
x=timeline_times,
y=emotion_data[label],
mode='lines',
name=label.capitalize(),
line=dict(width=0.5, color=colors.get(label, None)),
stackgroup='one', # This makes it a stacked area chart
fillcolor=colors.get(label, None),
hovertemplate=f'{label.capitalize()}: %{{y:.2f}}<extra></extra>'
)
)
# Improve layout
fig.update_layout(
title={
'text': "Voice Emotion Distribution Over Time",
'font': {'size': 22, 'family': 'Arial, sans-serif'}
},
xaxis_title="Time (seconds)",
yaxis_title="Emotion Intensity",
yaxis=dict(
showgrid=True,
gridcolor='rgba(230, 230, 230, 0.8)'
),
xaxis=dict(
showgrid=True,
gridcolor='rgba(230, 230, 230, 0.8)'
),
plot_bgcolor='white',
legend=dict(
bordercolor='rgba(0,0,0,0.1)',
borderwidth=1,
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
),
hovermode='closest',
height=500,
margin=dict(l=10, r=10, t=80, b=50)
)
return fig
def generate_emotion_summary(all_emotions):
"""
Produce an improved textual summary of the overall emotion distribution.
"""
if not all_emotions:
return "No emotional content detected."
emotion_counts = {}
emotion_confidence = {}
total_chunks = len(all_emotions)
for chunk_emotions in all_emotions:
top_emotion = max(chunk_emotions, key=lambda x: x['score'])
label = top_emotion["label"]
confidence = top_emotion["score"]
emotion_counts[label] = emotion_counts.get(label, 0) + 1
emotion_confidence[label] = emotion_confidence.get(label, 0) + confidence
# Calculate average confidence for each emotion
for emotion in emotion_confidence:
if emotion_counts[emotion] > 0:
emotion_confidence[emotion] /= emotion_counts[emotion]
# Dominant emotion (highest percentage)
dominant_emotion = max(emotion_counts, key=emotion_counts.get)
dominant_pct = (emotion_counts[dominant_emotion] / total_chunks) * 100
# Most confident emotion (might differ from dominant)
most_confident = max(emotion_confidence, key=emotion_confidence.get)
# Tone grouping analysis
tone_group_counts = {group: 0 for group in TONE_MAPPING}
for emotion, count in emotion_counts.items():
for tone_group, emotions in TONE_MAPPING.items():
if emotion in emotions:
tone_group_counts[tone_group] += count
dominant_tone = max(tone_group_counts, key=tone_group_counts.get)
dominant_tone_pct = (tone_group_counts[dominant_tone] / total_chunks) * 100
# Build summary with markdown formatting
summary = f"### Voice Emotion Analysis Summary\n\n"
summary += f"**Dominant emotion:** {dominant_emotion.capitalize()} ({dominant_pct:.1f}%)\n\n"
if dominant_emotion != most_confident and emotion_confidence[most_confident] > 0.7:
summary += f"**Most confident detection:** {most_confident.capitalize()} "
summary += f"(avg. confidence: {emotion_confidence[most_confident]:.2f})\n\n"
summary += f"**Overall tone:** {dominant_tone.capitalize()} ({dominant_tone_pct:.1f}%)\n\n"
summary += f"**Description:** {EMOTION_DESCRIPTIONS.get(dominant_emotion, '')}\n\n"
# Show emotion distribution as sorted list
summary += "**Emotion distribution:**\n"
for emotion, count in sorted(emotion_counts.items(), key=lambda x: x[1], reverse=True):
percentage = (count / total_chunks) * 100
avg_conf = emotion_confidence[emotion]
summary += f"- {emotion.capitalize()}: {percentage:.1f}% (confidence: {avg_conf:.2f})\n"
# Add interpretation based on dominant emotion
summary += f"\n**Interpretation:**\n"
if dominant_emotion == "happy":
summary += "The voice conveys primarily positive emotions, suggesting enthusiasm, satisfaction, or joy."
elif dominant_emotion == "neutral":
summary += "The voice maintains an even emotional tone, suggesting composure or professional delivery."
elif dominant_emotion == "sad":
summary += "The voice conveys melancholy or disappointment, potentially indicating concern or distress."
elif dominant_emotion == "angry":
summary += "The voice shows frustration or assertiveness, suggesting strong conviction or displeasure."
elif dominant_emotion == "fear":
summary += "The voice reveals anxiety or nervousness, suggesting uncertainty or concern."
elif dominant_emotion == "disgust":
summary += "The voice expresses disapproval or aversion, suggesting rejection of discussed concepts."
elif dominant_emotion == "surprise":
summary += "The voice shows unexpected reactions, suggesting discovery of new information or astonishment."
return summary
def build_detailed_results(all_emotions, time_points):
"""
Return a list of dictionaries containing chunk start-end, top emotion, confidence, description.
Suitable for Gradio DataFrame display.
"""
results_list = []
for (emotions, (start_time, end_time)) in zip(all_emotions, time_points):
top_emotion = max(emotions, key=lambda x: x['score'])
label = top_emotion["label"]
# Find second highest emotion if available
if len(emotions) > 1:
sorted_emotions = sorted(emotions, key=lambda x: x['score'], reverse=True)
second_emotion = sorted_emotions[1]["label"].capitalize()
second_score = sorted_emotions[1]["score"]
secondary = f" ({second_emotion}: {second_score:.2f})"
else:
secondary = ""
results_list.append({
"Time Range": f"{start_time:.1f}s - {end_time:.1f}s",
"Primary Emotion": label.capitalize(),
"Confidence": f"{top_emotion['score']:.2f}{secondary}",
"Description": EMOTION_DESCRIPTIONS.get(label, "")
})
return results_list
def process_audio(audio_file, progress=gr.Progress()):
"""
Main handler for Gradio:
1) Emotion analysis (returns Plotly figure).
2) Tone analysis (returns descriptive text).
"""
if not audio_file:
return None, None, "No audio file provided.", None, "No tone analysis."
# 1) Analyze emotions
fig, summary_text, detailed_results = analyze_audio_emotions(audio_file, progress)
if not fig: # Error or missing
return None, None, "Failed to analyze audio emotions.", None, "Tone analysis unavailable."
# 2) Generate alternative chart
# Extract the necessary data from detailed_results to create time_points
time_points = []
for result in detailed_results:
time_range = result["Time Range"]
start_time = float(time_range.split("s")[0])
end_time = float(time_range.split(" - ")[1].split("s")[0])
time_points.append((start_time, end_time))
# Extract emotion data from detailed_results
all_emotions = []
for result in detailed_results:
# Parse the primary emotion and confidence
primary_emotion = result["Primary Emotion"].lower()
confidence_str = result["Confidence"].split("(")[0].strip()
primary_confidence = float(confidence_str)
# Create a list of emotion dictionaries for this time point
emotions_at_time = [{"label": primary_emotion, "score": primary_confidence}]
# Check if there's a secondary emotion
if "(" in result["Confidence"]:
secondary_part = result["Confidence"].split("(")[1].split(")")[0]
secondary_emotion = secondary_part.split(":")[0].strip().lower()
secondary_confidence = float(secondary_part.split(":")[1].strip())
emotions_at_time.append({"label": secondary_emotion, "score": secondary_confidence})
# Add remaining emotions with zero confidence
for emotion in EMOTION_DESCRIPTIONS.keys():
if emotion not in [e["label"] for e in emotions_at_time]:
emotions_at_time.append({"label": emotion, "score": 0.0})
all_emotions.append(emotions_at_time)
# Now we can generate the alternative chart
alt_fig = generate_alternative_chart(all_emotions, time_points)
# 3) Analyze tone
tone_analysis = analyze_voice_tone(audio_file)
return fig, alt_fig, summary_text, detailed_results, tone_analysis
# Create Gradio interface with improved UI/UX
with gr.Blocks(title="Voice Emotion & Tone Analysis System", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐๏ธ Voice Emotion & Tone Analysis System
This app provides professional analysis of:
- **Emotions** in your voice (Anger, Disgust, Fear, Happy, Neutral, Sad, Surprise)
- **Tone characteristics** (based on pitch, energy, and speech patterns)
The interactive timeline shows emotion confidence scores throughout your audio.
""")
with gr.Tabs():
# Tab 1: Upload
with gr.TabItem("Upload Audio"):
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(
label="Upload Audio File",
type="filepath",
sources=["upload"],
elem_id="audio_upload"
)
process_btn = gr.Button("Analyze Voice", variant="primary")
gr.Markdown("""
**Supports:** MP3, WAV, M4A, and most audio formats
**For best results:** Use a clear voice recording with minimal background noise
""")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Line Chart"):
emotion_timeline = gr.Plot(label="Emotion Timeline",
elem_id="emotion_plot",
container=True)
with gr.TabItem("Area Chart"):
emotion_area_chart = gr.Plot(label="Emotion Distribution",
elem_id="emotion_area_plot",
container=True)
with gr.Row():
with gr.Column():
emotion_summary = gr.Markdown(label="Emotion Summary")
with gr.Column():
tone_analysis_output = gr.Markdown(label="Tone Analysis")
with gr.Row():
emotion_results = gr.DataFrame(
headers=["Time Range", "Primary Emotion", "Confidence", "Description"],
label="Detailed Emotion Analysis"
)
process_btn.click(
fn=process_audio,
inputs=[audio_input],
outputs=[emotion_timeline, emotion_area_chart, emotion_summary, emotion_results, tone_analysis_output]
)
# Tab 2: Record
with gr.TabItem("Record Voice"):
with gr.Row():
with gr.Column(scale=1):
record_input = gr.Audio(
label="Record Your Voice",
sources=["microphone"],
type="filepath",
elem_id="record_audio"
)
analyze_btn = gr.Button("Analyze Recording", variant="primary")
gr.Markdown("""
**Tips:**
- Speak clearly and at a normal pace
- Record at least 10-15 seconds for more accurate analysis
- Try different emotional tones to see how they're detected
""")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Line Chart"):
rec_emotion_timeline = gr.Plot(label="Emotion Timeline",
elem_id="record_emotion_plot",
container=True)
with gr.TabItem("Area Chart"):
rec_emotion_area_chart = gr.Plot(label="Emotion Distribution",
elem_id="record_emotion_area_plot",
container=True)
with gr.Row():
with gr.Column():
rec_emotion_summary = gr.Markdown(label="Emotion Summary")
with gr.Column():
rec_tone_analysis_output = gr.Markdown(label="Tone Analysis")
with gr.Row():
rec_emotion_results = gr.DataFrame(
headers=["Time Range", "Primary Emotion", "Confidence", "Description"],
label="Detailed Emotion Analysis"
)
analyze_btn.click(
fn=process_audio,
inputs=[record_input],
outputs=[rec_emotion_timeline, rec_emotion_area_chart, rec_emotion_summary, rec_emotion_results, rec_tone_analysis_output]
)
# Tab 3: About & Help
with gr.TabItem("About & Help"):
gr.Markdown("""
## About This System
This voice emotion & tone analysis system uses state-of-the-art deep learning models to detect emotions and analyze vocal characteristics. The system is built on HuBERT (Hidden Unit BERT) architecture trained on speech emotion recognition tasks.
### How It Works
1. **Audio Processing**: Your audio is processed in short segments (chunks) to capture emotion variations over time.
2. **Emotion Classification**: Each segment is analyzed by a neural network to detect emotional patterns.
3. **Tone Analysis**: Acoustic features like pitch, energy, and rhythm are analyzed to describe voice tone characteristics.
### Emotion Categories
The system detects seven standard emotions:
- **Angry**: Voice shows irritation, hostility, or aggression. Tone may be harsh, loud, or intense.
- **Disgust**: Voice expresses revulsion or strong disapproval. Tone may sound repulsed or contemptuous.
- **Fear**: Voice reveals anxiety, worry, or dread. Tone may be shaky, hesitant, or tense.
- **Happy**: Voice conveys joy, pleasure, or positive emotions. Tone is often bright, energetic, and uplifted.
- **Neutral**: Voice lacks strong emotional signals. Tone is even, moderate, and relatively flat.
- **Sad**: Voice expresses sorrow, unhappiness, or melancholy. Tone may be quiet, heavy, or subdued.
- **Surprise**: Voice reflects unexpected reactions. Tone may be higher pitched, quick, or energetic.
### Tips for Best Results
- Use clear audio with minimal background noise
- Speak naturally at a comfortable volume
- Record at least 10-15 seconds of speech
- For tone analysis, longer recordings (30+ seconds) provide more accurate results
### Privacy Notice
All audio processing happens on your device. No audio recordings or analysis results are stored or transmitted to external servers.
""")
gr.Markdown("""
---
### System Information
- **Model**: HuBERT Large for Speech Emotion Recognition
- **Version**: 1.2.0
- **Libraries**: PyTorch, Transformers, Librosa, Plotly
This application demonstrates the use of AI for speech emotion recognition and acoustic analysis. For research and educational purposes only.
""")
# Check if model can load before launching interface
print("Checking model availability...")
load_success = load_emotion_model()
if not load_success:
print("Warning: Emotion model failed to load. Application may have limited functionality.")
# Launch the demo
if __name__ == "__main__":
demo.launch()
|