Spaces:
Sleeping
Sleeping
Delete intent_graphs.py
Browse files- intent_graphs.py +0 -88
intent_graphs.py
DELETED
@@ -1,88 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import seaborn as sns
|
5 |
-
from sklearn.metrics import confusion_matrix, classification_report, precision_recall_curve
|
6 |
-
from sklearn.preprocessing import label_binarize
|
7 |
-
from transformers import BertTokenizer, BertForSequenceClassification
|
8 |
-
from datasets import load_dataset
|
9 |
-
|
10 |
-
# Check for CUDA
|
11 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
-
|
13 |
-
# Load dataset
|
14 |
-
dataset = load_dataset("clinc_oos", "plus")
|
15 |
-
label_names = dataset["train"].features["intent"].names # Ensure correct order
|
16 |
-
|
17 |
-
# Load model
|
18 |
-
num_labels = len(label_names)
|
19 |
-
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_labels)
|
20 |
-
model.load_state_dict(torch.load("intent_classifier.pth", map_location=device))
|
21 |
-
model.to(device)
|
22 |
-
model.eval()
|
23 |
-
|
24 |
-
# Load tokenizer
|
25 |
-
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
26 |
-
|
27 |
-
# Prepare data
|
28 |
-
true_labels = []
|
29 |
-
pred_labels = []
|
30 |
-
all_probs = []
|
31 |
-
|
32 |
-
for example in dataset["test"]:
|
33 |
-
sentence = example["text"]
|
34 |
-
true_label = example["intent"]
|
35 |
-
|
36 |
-
# Tokenize
|
37 |
-
inputs = tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
38 |
-
inputs = {key: val.to(device) for key, val in inputs.items()}
|
39 |
-
|
40 |
-
# Predict
|
41 |
-
with torch.no_grad():
|
42 |
-
outputs = model(**inputs)
|
43 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=1).cpu().numpy()[0]
|
44 |
-
predicted_class = np.argmax(probs)
|
45 |
-
|
46 |
-
# Store results
|
47 |
-
true_labels.append(true_label)
|
48 |
-
pred_labels.append(predicted_class)
|
49 |
-
all_probs.append(probs)
|
50 |
-
|
51 |
-
# Convert to numpy arrays
|
52 |
-
true_labels = np.array(true_labels)
|
53 |
-
pred_labels = np.array(pred_labels)
|
54 |
-
all_probs = np.array(all_probs)
|
55 |
-
|
56 |
-
# Compute confusion matrix
|
57 |
-
conf_matrix = confusion_matrix(true_labels, pred_labels)
|
58 |
-
|
59 |
-
# Plot confusion matrix
|
60 |
-
plt.figure(figsize=(12, 10))
|
61 |
-
sns.heatmap(conf_matrix, annot=False, fmt="d", cmap="Blues")
|
62 |
-
plt.xlabel("Predicted Label")
|
63 |
-
plt.ylabel("True Label")
|
64 |
-
plt.title("Confusion Matrix for Intent Classification")
|
65 |
-
plt.savefig("confusion_matrix.png", dpi=300, bbox_inches="tight")
|
66 |
-
plt.close()
|
67 |
-
|
68 |
-
print("Confusion matrix saved as confusion_matrix.png")
|
69 |
-
|
70 |
-
# --- Multi-Class Precision-Recall Curve ---
|
71 |
-
# Binarize true labels for multi-class PR calculation
|
72 |
-
true_labels_bin = label_binarize(true_labels, classes=np.arange(num_labels))
|
73 |
-
|
74 |
-
# Plot Precision-Recall Curve for multiple classes
|
75 |
-
plt.figure(figsize=(10, 8))
|
76 |
-
for i in range(num_labels):
|
77 |
-
precision, recall, _ = precision_recall_curve(true_labels_bin[:, i], all_probs[:, i])
|
78 |
-
plt.plot(recall, precision, lw=1, alpha=0.7, label=f"Class {i}: {label_names[i]}")
|
79 |
-
|
80 |
-
plt.xlabel("Recall")
|
81 |
-
plt.ylabel("Precision")
|
82 |
-
plt.title("Multi-Class Precision-Recall Curve")
|
83 |
-
plt.legend(loc="best", fontsize=6, ncol=2, frameon=True)
|
84 |
-
plt.grid(True)
|
85 |
-
plt.savefig("precision_recall_curve.png", dpi=300, bbox_inches="tight")
|
86 |
-
plt.close()
|
87 |
-
|
88 |
-
print("Precision-Recall curve saved as precision_recall_curve.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|