Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +402 -494
src/streamlit_app.py
CHANGED
|
@@ -3,14 +3,10 @@ import torch
|
|
| 3 |
import os
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
from together import Together
|
| 6 |
-
from transformers import
|
| 7 |
from datetime import datetime, timedelta
|
| 8 |
import pandas as pd
|
| 9 |
from task_css import get_custom_css # Import the custom CSS function
|
| 10 |
-
import gdown
|
| 11 |
-
|
| 12 |
-
# Set environment variable for offline mode
|
| 13 |
-
os.environ["TRANSFORMERS_OFFLINE"] = "1"
|
| 14 |
|
| 15 |
# Load environment variables
|
| 16 |
load_dotenv()
|
|
@@ -23,536 +19,448 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
| 23 |
|
| 24 |
# Load Intent Model
|
| 25 |
intent_model_path = "intent_classifier.pth"
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Load Emotion Model
|
| 31 |
emotions_model_path = "./saved_model"
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
st.markdown(
|
| 59 |
-
"""
|
| 60 |
-
<div class="loading-container" style="text-align: center; padding: 50px;">
|
| 61 |
-
<div class="loading-spinner"></div>
|
| 62 |
-
<h2>Setting up your AI assistant...</h2>
|
| 63 |
-
<p>This may take a minute. We're downloading the required models.</p>
|
| 64 |
-
</div>
|
| 65 |
-
""",
|
| 66 |
-
unsafe_allow_html=True
|
| 67 |
-
)
|
| 68 |
|
| 69 |
-
#
|
| 70 |
-
|
| 71 |
-
#
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
output="pretrained_models",
|
| 78 |
-
quiet=False
|
| 79 |
-
)
|
| 80 |
-
status.update(label="Base models downloaded!", state="complete")
|
| 81 |
-
|
| 82 |
-
# Intent Model Loading
|
| 83 |
-
if not os.path.exists(intent_model_path):
|
| 84 |
-
with st.status("Downloading intent model...", expanded=True) as status:
|
| 85 |
-
output = gdown.download(
|
| 86 |
-
f"https://drive.google.com/uc?id={file_id}",
|
| 87 |
-
intent_model_path,
|
| 88 |
-
quiet=False
|
| 89 |
-
)
|
| 90 |
-
status.update(label="Intent model downloaded!", state="complete")
|
| 91 |
-
|
| 92 |
-
# Emotion Model Loading
|
| 93 |
-
if not os.path.exists(emotions_model_path):
|
| 94 |
-
with st.status("Downloading emotion model...", expanded=True) as status:
|
| 95 |
-
os.makedirs(emotions_model_path, exist_ok=True)
|
| 96 |
-
gdown.download_folder(
|
| 97 |
-
f"https://drive.google.com/drive/folders/{emotions_folder_id}",
|
| 98 |
-
output=emotions_model_path,
|
| 99 |
-
quiet=False
|
| 100 |
-
)
|
| 101 |
-
status.update(label="Emotion model downloaded!", state="complete")
|
| 102 |
-
|
| 103 |
-
# Load and store intent model
|
| 104 |
-
intent_model = AutoModelForSequenceClassification.from_pretrained(
|
| 105 |
-
"pretrained_models/bert-base-uncased",
|
| 106 |
-
num_labels=num_intent_labels,
|
| 107 |
-
ignore_mismatched_sizes=True, # Add this parameter
|
| 108 |
-
local_files_only=True
|
| 109 |
-
)
|
| 110 |
-
intent_model.load_state_dict(
|
| 111 |
-
torch.load(intent_model_path, map_location=device, weights_only=True)
|
| 112 |
-
)
|
| 113 |
-
st.session_state.models["intent_model"] = intent_model.to(device).eval()
|
| 114 |
-
st.session_state.models["intent_tokenizer"] = AutoTokenizer.from_pretrained(
|
| 115 |
-
"pretrained_models/bert-base-uncased",
|
| 116 |
-
local_files_only=True
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
# Load and store emotion model
|
| 120 |
-
emotions_model = AutoModelForSequenceClassification.from_pretrained(
|
| 121 |
-
emotions_model_path,
|
| 122 |
-
ignore_mismatched_sizes=True, # Add this parameter
|
| 123 |
-
local_files_only=True
|
| 124 |
-
)
|
| 125 |
-
st.session_state.models["emotions_model"] = emotions_model.to(device).eval()
|
| 126 |
-
st.session_state.models["emotions_tokenizer"] = AutoTokenizer.from_pretrained(
|
| 127 |
-
emotions_model_path,
|
| 128 |
-
local_files_only=True
|
| 129 |
-
)
|
| 130 |
-
|
| 131 |
-
# Set ready state
|
| 132 |
-
st.session_state.is_ready = True
|
| 133 |
-
st.rerun()
|
| 134 |
-
|
| 135 |
-
except Exception as e:
|
| 136 |
-
st.error(f"Error loading models: {str(e)}")
|
| 137 |
-
st.stop()
|
| 138 |
-
|
| 139 |
-
# Only show main app if models are ready
|
| 140 |
-
if st.session_state.is_ready:
|
| 141 |
-
# Title with custom styling
|
| 142 |
-
st.markdown('<div class="main-header">π― MoodifyTask: AI Task Prioritization & Wellness Assistant</div>', unsafe_allow_html=True)
|
| 143 |
-
|
| 144 |
-
# Emotion Labels
|
| 145 |
-
emotion_label_names = [
|
| 146 |
-
"admiration", "amusement", "anger", "annoyance", "approval",
|
| 147 |
-
"caring", "confusion", "curiosity", "desire", "disappointment",
|
| 148 |
-
"disapproval", "disgust", "embarrassment", "excitement", "fear",
|
| 149 |
-
"gratitude", "grief", "joy", "love", "nervousness",
|
| 150 |
-
"optimism", "pride", "realization", "relief", "remorse",
|
| 151 |
-
"sadness", "surprise", "neutral"
|
| 152 |
-
]
|
| 153 |
-
|
| 154 |
-
# Emotion Categories
|
| 155 |
-
positive_emotions = ["admiration", "amusement", "approval", "caring", "curiosity", "excitement", "gratitude", "joy", "love", "optimism", "pride", "relief", "surprise"]
|
| 156 |
-
negative_emotions = ["anger", "annoyance", "disappointment", "disapproval", "disgust", "embarrassment", "fear", "grief", "nervousness", "remorse", "sadness"]
|
| 157 |
-
neutral_emotions = ["realization", "neutral"]
|
| 158 |
-
|
| 159 |
-
# Predict Intent
|
| 160 |
-
def predict_intent(sentence):
|
| 161 |
-
inputs = st.session_state.models["intent_tokenizer"](
|
| 162 |
-
sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128
|
| 163 |
-
)
|
| 164 |
-
inputs = {key: val.to(device) for key, val in inputs.items()}
|
| 165 |
-
with torch.no_grad():
|
| 166 |
-
outputs = st.session_state.models["intent_model"](**inputs)
|
| 167 |
-
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
| 168 |
-
|
| 169 |
-
# Mapping Intent IDs to Priorities (0-150)
|
| 170 |
-
PRIORITY_MAPPING = {
|
| 171 |
-
5: [8, 35, 42, 74, 97, 110, 118, 120, 124, 136], # freeze_account, report_lost_card, flight_status, report_fraud, credit_limit, lost_luggage, dispute_charge, overdraft, cancel_reservation, emergency
|
| 172 |
-
4: [14, 15, 19, 20, 39, 47, 48, 49, 50, 69, 70, 71, 72], # bill_balance, bill_due, exchange_rate, credit_score, interest_rate, insurance, medical_expenses, appointment_schedule, meeting_schedule, dentist_appointment, doctor_appointment, prescription_refill, pharmacy_hours
|
| 173 |
-
3: [33, 34, 41, 51, 56, 57, 62, 66, 77, 78, 85], # hotel_reservation, car_rental, restaurant_reservation, tracking_package, check_in, check_out, traffic_update, directions, smart_home_on, smart_home_off, weather_forecast
|
| 174 |
-
2: [0, 1, 3, 6, 9, 13, 16, 17, 21, 25, 27, 28, 36, 40, 45, 52, 61], # restaurant_reviews, shopping_list, what_song, schedule_meeting, translate, play_music, book_hotel, book_flight, gas_prices, exchange_rate, movie_showtimes, recipe, cancel_flight, book_reservation, order_food, car_services, joke
|
| 175 |
-
1: [2, 4, 5, 7, 10, 11, 12, 18, 22, 23, 24, 26, 30, 31, 32, 37, 38, 43, 44, 46, 53, 54, 55, 58, 59, 60, 63, 64, 65, 67, 68, 73]
|
| 176 |
-
# tell_joke, fun_fact, trivia, horoscope, dog_fact, cat_fact, define_word, stock_price, sports_update, lottery_results, currency_conversion, holiday_list, language_learning, random_fact, poem, quote, daily_horoscope, joke_request, music_recommendation, podcast_recommendation, celebrity_gossip, movie_recommendation, TV_show_recommendation, book_recommendation, game_recommendation, radio_recommendation, trivia_game, riddle, name_meaning, birthday_reminder, anniversary_reminder, affirmations
|
| 177 |
-
}
|
| 178 |
-
|
| 179 |
-
# Find the priority based on predicted_class
|
| 180 |
-
predicted_intent_score = next((priority for priority, ids in PRIORITY_MAPPING.items() if predicted_class in ids), 1) # Default to 1 if not found
|
| 181 |
-
|
| 182 |
-
return predicted_intent_score
|
| 183 |
-
|
| 184 |
-
# Emotion to Numeric Score Mapping
|
| 185 |
-
EMOTION_MAPPING = {
|
| 186 |
-
"admiration": 4, "amusement": 3, "anger": 5, "annoyance": 4, "approval": 3,
|
| 187 |
-
"caring": 4, "confusion": 3, "curiosity": 3, "desire": 4, "disappointment": 4,
|
| 188 |
-
"disapproval": 4, "disgust": 5, "embarrassment": 4, "excitement": 5, "fear": 5,
|
| 189 |
-
"gratitude": 3, "grief": 5, "joy": 5, "love": 5, "nervousness": 4,
|
| 190 |
-
"optimism": 4, "pride": 4, "realization": 3, "relief": 3, "remorse": 4,
|
| 191 |
-
"sadness": 5, "surprise": 3, "neutral": 3
|
| 192 |
}
|
| 193 |
|
| 194 |
-
#
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
elif emotion in negative_emotions:
|
| 233 |
-
return "negative"
|
| 234 |
-
else:
|
| 235 |
-
return "neutral"
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
# Calculate Task Priority
|
| 242 |
-
def calculate_priority_score(predicted_intent_score,emotion_score, emotion, time_remaining, complexity, emotion_category):
|
| 243 |
-
"""
|
| 244 |
-
Calculate an adaptive priority score for tasks based on intent, emotion, time urgency, and complexity.
|
| 245 |
-
"""
|
| 246 |
-
emotion_score = emotion_score if emotion_score is not None else 3
|
| 247 |
-
# Normalize time urgency (scale 0 to 1 based on 7 days)
|
| 248 |
-
time_score = max(0, min(1, 1 - (time_remaining.total_seconds() / (7 * 24 * 3600))))
|
| 249 |
-
|
| 250 |
-
# Set emotion-based adjustments
|
| 251 |
-
stress_emotions = ["nervousness", "sadness", "fear"]
|
| 252 |
-
frustration_emotions = ["anger", "frustration","disappointment","annoyance"]
|
| 253 |
-
anxiety_emotions = ["anxiety", "uncertainty"]
|
| 254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
priority = (predicted_intent_score * 0.15) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.45)
|
| 260 |
-
|
| 261 |
-
elif emotion in frustration_emotions:
|
| 262 |
-
# Prioritize **engaging** tasks (not too easy) but keep urgency in mind
|
| 263 |
-
priority = (predicted_intent_score * 0.2) + (emotion_score * 0.15) + (time_score * 0.25) + (complexity * 0.4)
|
| 264 |
-
|
| 265 |
-
elif emotion in anxiety_emotions:
|
| 266 |
-
# Prioritize **urgent, low-complexity** tasks
|
| 267 |
-
priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.4) + ((10 - complexity) * 0.3)
|
| 268 |
-
|
| 269 |
-
else:
|
| 270 |
-
# Default for negative emotions: balance urgency and ease
|
| 271 |
-
priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.4)
|
| 272 |
-
|
| 273 |
-
elif emotion_category == "positive":
|
| 274 |
-
# If the user is in a **good mood**, favor challenging, high-impact tasks
|
| 275 |
-
priority = (predicted_intent_score * 0.35) + (emotion_score * 0.2) + (time_score * 0.25) + (complexity * 0.2)
|
| 276 |
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
|
| 281 |
-
|
| 282 |
|
| 283 |
|
| 284 |
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
| 288 |
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
"""
|
| 313 |
-
try:
|
| 314 |
-
response = client.chat.completions.create(
|
| 315 |
-
messages=[{"role": "user", "content": well_being_prompt}],
|
| 316 |
-
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
| 317 |
-
temperature=0.7,
|
| 318 |
-
)
|
| 319 |
-
return response.choices[0].message.content
|
| 320 |
-
except Exception as e:
|
| 321 |
-
return f"Error generating well-being tips: {e}"
|
| 322 |
-
|
| 323 |
-
# Prepare the prompt with more detailed datetime information
|
| 324 |
-
task_details = "\n".join([
|
| 325 |
-
f"- {task['description']} (Priority: {task['priority_score']:.2f}, Complexity: {task['complexity']}, Due: {task['due_date_time'].strftime('%B %d, %I:%M %p')})"
|
| 326 |
-
for task in filtered_tasks
|
| 327 |
-
])
|
| 328 |
-
|
| 329 |
-
prompt = f"""
|
| 330 |
-
The user is feeling {emotion}.
|
| 331 |
-
They need a structured productivity plan starting from {selected_datetime.strftime('%B %d, %I:%M %p')}, not the current time.
|
| 332 |
-
|
| 333 |
-
Their prioritized tasks (due on or after the selected time), sorted by priority score:
|
| 334 |
-
{task_details}
|
| 335 |
-
|
| 336 |
-
Please provide:
|
| 337 |
-
1. A detailed schedule with specific times for each task
|
| 338 |
-
2. Strategic breaks based on task complexity and emotional state
|
| 339 |
-
3. Wellness activities that complement their current emotion
|
| 340 |
-
4. Tips for managing tasks effectively given their emotional state
|
| 341 |
-
5. Suggestions for handling high-priority tasks first while maintaining well-being
|
| 342 |
"""
|
| 343 |
-
|
| 344 |
try:
|
| 345 |
response = client.chat.completions.create(
|
| 346 |
-
messages=[{"role": "user", "content":
|
| 347 |
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
| 348 |
temperature=0.7,
|
| 349 |
)
|
| 350 |
return response.choices[0].message.content
|
| 351 |
except Exception as e:
|
| 352 |
-
return f"Error generating
|
| 353 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
|
| 355 |
-
|
| 356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
)
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
-
if emotion_sentence:
|
| 369 |
-
emotion_score, emotion_label = predict_emotion(emotion_sentence)
|
| 370 |
-
st.session_state.overall_emotion = emotion_score
|
| 371 |
-
st.session_state.overall_emotion_label = emotion_label
|
| 372 |
-
|
| 373 |
-
st.markdown(f'<div class="emotion-badge">Detected Emotion: {emotion_label}</div>', unsafe_allow_html=True)
|
| 374 |
-
|
| 375 |
-
# Emotion-based task reprioritization
|
| 376 |
-
for task in st.session_state.tasks:
|
| 377 |
-
task["priority_score"] = calculate_priority_score(
|
| 378 |
-
task["predicted_intent_score"],
|
| 379 |
-
emotion_score,
|
| 380 |
-
emotion_label,
|
| 381 |
-
task["time_remaining"],
|
| 382 |
-
task["complexity"],
|
| 383 |
-
get_emotion_category(emotion_label)
|
| 384 |
-
)
|
| 385 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 386 |
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
complexity,
|
| 428 |
-
get_emotion_category(st.session_state.overall_emotion_label)
|
| 429 |
-
),
|
| 430 |
-
"completed": False
|
| 431 |
-
}
|
| 432 |
-
|
| 433 |
-
st.session_state.tasks.append(task)
|
| 434 |
-
st.session_state.task_counter += 1 # Increment counter
|
| 435 |
-
st.success("β
Task Added Successfully!")
|
| 436 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 437 |
-
|
| 438 |
-
# Task List with Improved Visualization
|
| 439 |
-
if st.session_state.tasks:
|
| 440 |
-
st.markdown('<h3>π Task Priority List</h3>', unsafe_allow_html=True)
|
| 441 |
-
|
| 442 |
-
# Sort tasks by priority
|
| 443 |
-
sorted_tasks = sorted(st.session_state.tasks, key=lambda x: x["priority_score"], reverse=True)
|
| 444 |
-
|
| 445 |
-
# Create task overview cards
|
| 446 |
-
st.markdown('<div class="task-overview">', unsafe_allow_html=True)
|
| 447 |
-
col1, col2 = st.columns(2)
|
| 448 |
-
with col1:
|
| 449 |
-
st.markdown(f'<div class="metric-card"><div class="metric-value">{len(sorted_tasks)}</div><div class="metric-label">Total Tasks</div></div>', unsafe_allow_html=True)
|
| 450 |
-
# with col2:
|
| 451 |
-
# high_priority = len([t for t in sorted_tasks if t["priority_score"] > 0.7])
|
| 452 |
-
# st.markdown(f'<div class="metric-card"><div class="metric-value">{high_priority}</div><div class="metric-label">High Priority</div></div>', unsafe_allow_html=True)
|
| 453 |
-
with col2:
|
| 454 |
-
today = datetime.now()
|
| 455 |
-
due_today = len([t for t in sorted_tasks if t["due_date_time"].date() == today.date()])
|
| 456 |
-
st.markdown(f'<div class="metric-card"><div class="metric-value">{due_today}</div><div class="metric-label">Due Today</div></div>', unsafe_allow_html=True)
|
| 457 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 458 |
|
| 459 |
-
|
| 460 |
-
for idx, task in enumerate(sorted_tasks):
|
| 461 |
-
priority_class = "high-priority" if task["priority_score"] > 0.7 else "medium-priority"
|
| 462 |
-
|
| 463 |
-
# Create a single row for task and buttons
|
| 464 |
-
task_container = st.container()
|
| 465 |
-
with task_container:
|
| 466 |
-
cols = st.columns([0.8, 0.1, 0.1])
|
| 467 |
-
|
| 468 |
-
# Task content in first column
|
| 469 |
-
with cols[0]:
|
| 470 |
-
st.markdown(f"""
|
| 471 |
-
<div class="priority-task {priority_class}">
|
| 472 |
-
<div class="task-content">
|
| 473 |
-
<div class="task-header">
|
| 474 |
-
<span class="task-title">{task["description"]}</span>
|
| 475 |
-
<span class="priority-score">Priority: {task["priority_score"]:.2f}</span>
|
| 476 |
-
</div>
|
| 477 |
-
<div class="task-details">
|
| 478 |
-
<span class="task-stat">Due: {task["due_date_time"].strftime("%d %b, %I:%M %p")}</span>
|
| 479 |
-
<span class="task-stat">Complexity: {task["complexity"]}</span>
|
| 480 |
-
</div>
|
| 481 |
-
</div>
|
| 482 |
-
</div>
|
| 483 |
-
""", unsafe_allow_html=True)
|
| 484 |
-
st.session_state.editing_task_id = None
|
| 485 |
-
# Edit button
|
| 486 |
-
with cols[1]:
|
| 487 |
-
if st.button("βοΈ", key=f"edit_{idx}", help="Edit task"):
|
| 488 |
-
st.session_state.editing_task_id = idx
|
| 489 |
-
|
| 490 |
-
# Delete button
|
| 491 |
-
with cols[2]:
|
| 492 |
-
if st.button("ποΈ", key=f"delete_{idx}", help="Delete task"):
|
| 493 |
-
st.session_state.tasks.pop(idx)
|
| 494 |
-
st.success("Task deleted!")
|
| 495 |
-
st.rerun()
|
| 496 |
-
|
| 497 |
-
# Show edit form below the task if being edited
|
| 498 |
-
if st.session_state.editing_task_id == idx:
|
| 499 |
-
with st.form(key=f"edit_form_{idx}"):
|
| 500 |
-
col1, col2 = st.columns(2)
|
| 501 |
-
with col1:
|
| 502 |
-
new_description = st.text_input("Description", value=task["description"])
|
| 503 |
-
new_complexity = st.slider("Complexity", 1, 10, value=task["complexity"])
|
| 504 |
-
with col2:
|
| 505 |
-
new_due_date = st.date_input("Due Date", value=task["due_date_time"].date())
|
| 506 |
-
new_due_time = st.time_input("Due Time", value=task["due_date_time"].time())
|
| 507 |
-
|
| 508 |
-
col1, col2 = st.columns(2)
|
| 509 |
-
with col1:
|
| 510 |
-
if st.form_submit_button("πΎ Save"):
|
| 511 |
-
# Update task
|
| 512 |
-
task["description"] = new_description
|
| 513 |
-
task["due_date_time"] = datetime.combine(new_due_date, new_due_time)
|
| 514 |
-
task["time_remaining"] = task["due_date_time"] - datetime.now()
|
| 515 |
-
task["complexity"] = new_complexity
|
| 516 |
-
|
| 517 |
-
# Recalculate priority
|
| 518 |
-
task["priority_score"] = calculate_priority_score(
|
| 519 |
-
task["predicted_intent_score"],
|
| 520 |
-
task["predicted_emotion"],
|
| 521 |
-
task["predicted_label_name"],
|
| 522 |
-
task["time_remaining"],
|
| 523 |
-
task["complexity"],
|
| 524 |
-
get_emotion_category(task["predicted_label_name"])
|
| 525 |
-
)
|
| 526 |
-
st.session_state.editing_task_id = None
|
| 527 |
-
st.success("Task updated!")
|
| 528 |
-
st.rerun()
|
| 529 |
-
|
| 530 |
-
with col2:
|
| 531 |
-
if st.form_submit_button("β Cancel"):
|
| 532 |
-
st.session_state.editing_task_id = None
|
| 533 |
-
st.rerun()
|
| 534 |
-
|
| 535 |
-
# AI Plan Section
|
| 536 |
-
if st.session_state.tasks:
|
| 537 |
-
st.markdown('<div class="custom-card">', unsafe_allow_html=True)
|
| 538 |
-
st.markdown('<h3>β° AI Task Planning</h3>', unsafe_allow_html=True)
|
| 539 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
col_date, col_time = st.columns(2)
|
| 541 |
|
| 542 |
with col_date:
|
| 543 |
-
|
| 544 |
|
| 545 |
with col_time:
|
| 546 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 547 |
|
| 548 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 549 |
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
selected_datetime # Pass full datetime object
|
| 555 |
-
)
|
| 556 |
-
st.markdown(f'<div class="info-box">{suggestion}</div>', unsafe_allow_html=True)
|
| 557 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 558 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import os
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
from together import Together
|
| 6 |
+
from transformers import BertTokenizer,DistilBertTokenizer, BertForSequenceClassification, DistilBertForSequenceClassification
|
| 7 |
from datetime import datetime, timedelta
|
| 8 |
import pandas as pd
|
| 9 |
from task_css import get_custom_css # Import the custom CSS function
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Load environment variables
|
| 12 |
load_dotenv()
|
|
|
|
| 19 |
|
| 20 |
# Load Intent Model
|
| 21 |
intent_model_path = "intent_classifier.pth"
|
| 22 |
+
num_intent_labels = 151
|
| 23 |
+
intent_model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=num_intent_labels)
|
| 24 |
+
intent_model.load_state_dict(torch.load(intent_model_path, map_location=device))
|
| 25 |
+
intent_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 26 |
+
intent_model.to(device).eval()
|
| 27 |
|
| 28 |
# Load Emotion Model
|
| 29 |
emotions_model_path = "./saved_model"
|
| 30 |
+
emotions_model = DistilBertForSequenceClassification.from_pretrained(emotions_model_path)
|
| 31 |
+
emotions_tokenizer = DistilBertTokenizer.from_pretrained(emotions_model_path)
|
| 32 |
+
emotions_model.to(device).eval()
|
| 33 |
+
|
| 34 |
+
# Emotion Labels
|
| 35 |
+
emotion_label_names = [
|
| 36 |
+
"admiration", "amusement", "anger", "annoyance", "approval",
|
| 37 |
+
"caring", "confusion", "curiosity", "desire", "disappointment",
|
| 38 |
+
"disapproval", "disgust", "embarrassment", "excitement", "fear",
|
| 39 |
+
"gratitude", "grief", "joy", "love", "nervousness",
|
| 40 |
+
"optimism", "pride", "realization", "relief", "remorse",
|
| 41 |
+
"sadness", "surprise", "neutral"
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
# Emotion Categories
|
| 45 |
+
positive_emotions = ["admiration", "amusement", "approval", "caring", "curiosity", "excitement", "gratitude", "joy", "love", "optimism", "pride", "relief", "surprise"]
|
| 46 |
+
negative_emotions = ["anger", "annoyance", "disappointment", "disapproval", "disgust", "embarrassment", "fear", "grief", "nervousness", "remorse", "sadness"]
|
| 47 |
+
neutral_emotions = ["realization", "neutral"]
|
| 48 |
+
|
| 49 |
+
# Predict Intent
|
| 50 |
+
def predict_intent(sentence):
|
| 51 |
+
inputs = intent_tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
| 52 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
outputs = intent_model(**inputs)
|
| 55 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
# Mapping Intent IDs to Priorities (0-150)
|
| 58 |
+
PRIORITY_MAPPING = {
|
| 59 |
+
5: [8, 35, 42, 74, 97, 110, 118, 120, 124, 136], # freeze_account, report_lost_card, flight_status, report_fraud, credit_limit, lost_luggage, dispute_charge, overdraft, cancel_reservation, emergency
|
| 60 |
+
4: [14, 15, 19, 20, 39, 47, 48, 49, 50, 69, 70, 71, 72], # bill_balance, bill_due, exchange_rate, credit_score, interest_rate, insurance, medical_expenses, appointment_schedule, meeting_schedule, dentist_appointment, doctor_appointment, prescription_refill, pharmacy_hours
|
| 61 |
+
3: [33, 34, 41, 51, 56, 57, 62, 66, 77, 78, 85], # hotel_reservation, car_rental, restaurant_reservation, tracking_package, check_in, check_out, traffic_update, directions, smart_home_on, smart_home_off, weather_forecast
|
| 62 |
+
2: [0, 1, 3, 6, 9, 13, 16, 17, 21, 25, 27, 28, 36, 40, 45, 52, 61], # restaurant_reviews, shopping_list, what_song, schedule_meeting, translate, play_music, book_hotel, book_flight, gas_prices, exchange_rate, movie_showtimes, recipe, cancel_flight, book_reservation, order_food, car_services, joke
|
| 63 |
+
1: [2, 4, 5, 7, 10, 11, 12, 18, 22, 23, 24, 26, 30, 31, 32, 37, 38, 43, 44, 46, 53, 54, 55, 58, 59, 60, 63, 64, 65, 67, 68, 73]
|
| 64 |
+
# tell_joke, fun_fact, trivia, horoscope, dog_fact, cat_fact, define_word, stock_price, sports_update, lottery_results, currency_conversion, holiday_list, language_learning, random_fact, poem, quote, daily_horoscope, joke_request, music_recommendation, podcast_recommendation, celebrity_gossip, movie_recommendation, TV_show_recommendation, book_recommendation, game_recommendation, radio_recommendation, trivia_game, riddle, name_meaning, birthday_reminder, anniversary_reminder, affirmations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
}
|
| 66 |
|
| 67 |
+
# Find the priority based on predicted_class
|
| 68 |
+
predicted_intent_score = next((priority for priority, ids in PRIORITY_MAPPING.items() if predicted_class in ids), 1) # Default to 1 if not found
|
| 69 |
+
|
| 70 |
+
return predicted_intent_score
|
| 71 |
+
|
| 72 |
+
# Emotion to Numeric Score Mapping
|
| 73 |
+
EMOTION_MAPPING = {
|
| 74 |
+
"admiration": 4, "amusement": 3, "anger": 5, "annoyance": 4, "approval": 3,
|
| 75 |
+
"caring": 4, "confusion": 3, "curiosity": 3, "desire": 4, "disappointment": 4,
|
| 76 |
+
"disapproval": 4, "disgust": 5, "embarrassment": 4, "excitement": 5, "fear": 5,
|
| 77 |
+
"gratitude": 3, "grief": 5, "joy": 5, "love": 5, "nervousness": 4,
|
| 78 |
+
"optimism": 4, "pride": 4, "realization": 3, "relief": 3, "remorse": 4,
|
| 79 |
+
"sadness": 5, "surprise": 3, "neutral": 3
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
# Function to get numeric emotion score
|
| 83 |
+
def get_emotion_score(emotion):
|
| 84 |
+
return EMOTION_MAPPING.get(emotion.lower(), 3) # Default to 3 if not found
|
| 85 |
+
# Predict Emotion
|
| 86 |
+
def predict_emotion(sentence):
|
| 87 |
+
if not sentence.strip():
|
| 88 |
+
return 3, "neutral"
|
| 89 |
+
# Ensure the input is a full sentence
|
| 90 |
+
if len(sentence.split()) == 1:
|
| 91 |
+
sentence = f"I feel {sentence}"
|
| 92 |
+
inputs = emotions_tokenizer(sentence, return_tensors="pt", padding="max_length", truncation=True, max_length=128)
|
| 93 |
+
inputs = {key: val.to(device) for key, val in inputs.items() if key != "token_type_ids"}
|
| 94 |
+
|
| 95 |
+
with torch.no_grad():
|
| 96 |
+
outputs = emotions_model(**inputs)
|
| 97 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).cpu().numpy()[0]
|
| 98 |
+
|
| 99 |
+
detected_emotion = emotion_label_names[predicted_class]
|
| 100 |
+
|
| 101 |
+
# Manually adjust for stress/pressure-related words
|
| 102 |
+
stress_keywords = ["stress", "stressed", "overwhelmed", "pressure", "tense", "burnout"]
|
| 103 |
+
if any(word in sentence.lower() for word in stress_keywords):
|
| 104 |
+
if detected_emotion not in ["sadness", "nervousness"]:
|
| 105 |
+
detected_emotion = "nervousness" # Change to "sadness" if you prefer
|
| 106 |
+
|
| 107 |
+
emotion_score = get_emotion_score(detected_emotion)
|
| 108 |
+
if emotion_score is None:
|
| 109 |
+
emotion_score = 3 # Default neutral score
|
| 110 |
+
|
| 111 |
+
return emotion_score, detected_emotion
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# Get Emotion Category
|
| 115 |
+
def get_emotion_category(emotion):
|
| 116 |
+
if emotion in positive_emotions:
|
| 117 |
+
return "positive"
|
| 118 |
+
elif emotion in negative_emotions:
|
| 119 |
+
return "negative"
|
| 120 |
+
else:
|
| 121 |
+
return "neutral"
|
| 122 |
+
|
| 123 |
|
| 124 |
+
def normalize_priority(priority, min_value=0, max_value=10):
|
| 125 |
+
return (priority - min_value) / (max_value - min_value) # Normalize between 0-1
|
| 126 |
+
|
| 127 |
+
# Calculate Task Priority
|
| 128 |
+
def calculate_priority_score(predicted_intent_score,emotion_score, emotion, time_remaining, complexity, emotion_category):
|
| 129 |
+
"""
|
| 130 |
+
Calculate an adaptive priority score for tasks based on intent, emotion, time urgency, and complexity.
|
| 131 |
+
"""
|
| 132 |
+
emotion_score = emotion_score if emotion_score is not None else 3
|
| 133 |
+
# Normalize time urgency (scale 0 to 1 based on 7 days)
|
| 134 |
+
time_score = max(0, min(1, 1 - (time_remaining.total_seconds() / (7 * 24 * 3600))))
|
| 135 |
+
|
| 136 |
+
# Set emotion-based adjustments
|
| 137 |
+
stress_emotions = ["nervousness", "sadness", "fear"]
|
| 138 |
+
frustration_emotions = ["anger", "frustration","disappointment","annoyance"]
|
| 139 |
+
anxiety_emotions = ["anxiety", "uncertainty"]
|
| 140 |
+
|
| 141 |
|
| 142 |
+
if emotion_category == "negative":
|
| 143 |
+
if emotion in stress_emotions:
|
| 144 |
+
# Prioritize **easy, quick** tasks to reduce cognitive load
|
| 145 |
+
priority = (predicted_intent_score * 0.15) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.45)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
elif emotion in frustration_emotions:
|
| 148 |
+
# Prioritize **engaging** tasks (not too easy) but keep urgency in mind
|
| 149 |
+
priority = (predicted_intent_score * 0.2) + (emotion_score * 0.15) + (time_score * 0.25) + (complexity * 0.4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
elif emotion in anxiety_emotions:
|
| 152 |
+
# Prioritize **urgent, low-complexity** tasks
|
| 153 |
+
priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.4) + ((10 - complexity) * 0.3)
|
| 154 |
+
|
| 155 |
+
else:
|
| 156 |
+
# Default for negative emotions: balance urgency and ease
|
| 157 |
+
priority = (predicted_intent_score * 0.2) + (emotion_score * 0.1) + (time_score * 0.3) + ((10 - complexity) * 0.4)
|
| 158 |
|
| 159 |
+
elif emotion_category == "positive":
|
| 160 |
+
# If the user is in a **good mood**, favor challenging, high-impact tasks
|
| 161 |
+
priority = (predicted_intent_score * 0.35) + (emotion_score * 0.2) + (time_score * 0.25) + (complexity * 0.2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
else: # Neutral emotion
|
| 164 |
+
# Keep a balance between difficulty and urgency
|
| 165 |
+
priority = (predicted_intent_score * 0.3) + (emotion_score * 0.2) + (time_score * 0.2) + (complexity * 0.3)
|
| 166 |
|
| 167 |
+
return normalize_priority(priority) # Ensure no negative priority values
|
| 168 |
|
| 169 |
|
| 170 |
|
| 171 |
|
| 172 |
+
# AI-Generated Plan Based on Start Time
|
| 173 |
+
from datetime import datetime
|
| 174 |
|
| 175 |
+
def get_llama_suggestion(emotion, tasks, selected_datetime):
|
| 176 |
+
"""Generate AI plan based on full datetime instead of just time"""
|
| 177 |
+
# Sort tasks by priority (higher priority first)
|
| 178 |
+
sorted_tasks = sorted(tasks, key=lambda x: x["priority_score"], reverse=True)
|
| 179 |
|
| 180 |
+
# Filter tasks based on selected datetime
|
| 181 |
+
filtered_tasks = [
|
| 182 |
+
task for task in sorted_tasks
|
| 183 |
+
if task["due_date_time"] >= selected_datetime
|
| 184 |
+
]
|
| 185 |
|
| 186 |
+
if not filtered_tasks:
|
| 187 |
+
well_being_prompts = {
|
| 188 |
+
"nervousness": "Suggest mindfulness exercises and short relaxation techniques.",
|
| 189 |
+
"sadness": "Suggest comforting activities like journaling or light exercise.",
|
| 190 |
+
"anger": "Suggest ways to channel frustration productively.",
|
| 191 |
+
"joy": "Suggest ways to maintain productivity while feeling good.",
|
| 192 |
+
"neutral": "Suggest general relaxation activities like listening to music."
|
| 193 |
+
}
|
| 194 |
+
well_being_prompt = f"""
|
| 195 |
+
The user is feeling {emotion}.
|
| 196 |
+
They have no tasks scheduled after {selected_datetime.strftime('%B %d, %I:%M %p')}.
|
| 197 |
+
{well_being_prompts.get(emotion, 'Provide general well-being tips.')}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
"""
|
|
|
|
| 199 |
try:
|
| 200 |
response = client.chat.completions.create(
|
| 201 |
+
messages=[{"role": "user", "content": well_being_prompt}],
|
| 202 |
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
| 203 |
temperature=0.7,
|
| 204 |
)
|
| 205 |
return response.choices[0].message.content
|
| 206 |
except Exception as e:
|
| 207 |
+
return f"Error generating well-being tips: {e}"
|
| 208 |
|
| 209 |
+
# Prepare the prompt with more detailed datetime information
|
| 210 |
+
task_details = "\n".join([
|
| 211 |
+
f"- {task['description']} (Priority: {task['priority_score']:.2f}, Complexity: {task['complexity']}, Due: {task['due_date_time'].strftime('%B %d, %I:%M %p')})"
|
| 212 |
+
for task in filtered_tasks
|
| 213 |
+
])
|
| 214 |
|
| 215 |
+
prompt = f"""
|
| 216 |
+
The user is feeling {emotion}.
|
| 217 |
+
They need a structured productivity plan starting from {selected_datetime.strftime('%B %d, %I:%M %p')}, not the current time.
|
| 218 |
+
|
| 219 |
+
Their prioritized tasks (due on or after the selected time), sorted by priority score:
|
| 220 |
+
{task_details}
|
| 221 |
|
| 222 |
+
Please provide:
|
| 223 |
+
1. A detailed schedule with specific times for each task
|
| 224 |
+
2. Strategic breaks based on task complexity and emotional state
|
| 225 |
+
3. Wellness activities that complement their current emotion
|
| 226 |
+
4. Tips for managing tasks effectively given their emotional state
|
| 227 |
+
5. Suggestions for handling high-priority tasks first while maintaining well-being
|
| 228 |
+
"""
|
| 229 |
+
|
| 230 |
+
try:
|
| 231 |
+
response = client.chat.completions.create(
|
| 232 |
+
messages=[{"role": "user", "content": prompt}],
|
| 233 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
| 234 |
+
temperature=0.7,
|
| 235 |
)
|
| 236 |
+
return response.choices[0].message.content
|
| 237 |
+
except Exception as e:
|
| 238 |
+
return f"Error generating AI plan: {e}"
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
+
# Page Configuration
|
| 242 |
+
st.set_page_config(
|
| 243 |
+
page_title="π AI Productivity Assistant",
|
| 244 |
+
layout="wide",
|
| 245 |
+
page_icon="π―"
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
# Custom CSS for enhanced styling
|
| 249 |
+
st.markdown(get_custom_css(), unsafe_allow_html=True)
|
| 250 |
+
|
| 251 |
+
# Title with custom styling
|
| 252 |
+
st.markdown('<div class="main-header">π― MoodifyTask: AI Task Prioritization & Wellness Assistant</div>', unsafe_allow_html=True)
|
| 253 |
+
|
| 254 |
+
# Initialize Session State
|
| 255 |
+
if "tasks" not in st.session_state:
|
| 256 |
+
st.session_state.tasks = []
|
| 257 |
+
if "task_counter" not in st.session_state: # Add counter for unique IDs
|
| 258 |
+
st.session_state.task_counter = 0
|
| 259 |
+
if "overall_emotion" not in st.session_state:
|
| 260 |
+
st.session_state.overall_emotion = None
|
| 261 |
+
if "overall_emotion_label" not in st.session_state:
|
| 262 |
+
st.session_state.overall_emotion_label = "Neutral"
|
| 263 |
+
|
| 264 |
+
# Layout with improved spacing
|
| 265 |
+
col1, col2 = st.columns([1, 1], gap="medium")
|
| 266 |
+
|
| 267 |
+
with col1:
|
| 268 |
+
# st.markdown('<div class="emotion-analysis">', unsafe_allow_html=True)
|
| 269 |
+
st.markdown('<h3>π Mood Analysis</h3>', unsafe_allow_html=True)
|
| 270 |
+
emotion_sentence = st.text_area(
|
| 271 |
+
"Describe how you're feeling today:",
|
| 272 |
+
value="",
|
| 273 |
+
height=150,
|
| 274 |
+
help="Your emotional state helps us prioritize tasks more effectively"
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
if emotion_sentence:
|
| 278 |
+
emotion_score, emotion_label = predict_emotion(emotion_sentence)
|
| 279 |
+
st.session_state.overall_emotion = emotion_score
|
| 280 |
+
st.session_state.overall_emotion_label = emotion_label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
| 282 |
+
st.markdown(f'<div class="emotion-badge">Detected Emotion: {emotion_label}</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
+
# Emotion-based task reprioritization
|
| 285 |
+
for task in st.session_state.tasks:
|
| 286 |
+
task["priority_score"] = calculate_priority_score(
|
| 287 |
+
task["predicted_intent_score"],
|
| 288 |
+
emotion_score,
|
| 289 |
+
emotion_label,
|
| 290 |
+
task["time_remaining"],
|
| 291 |
+
task["complexity"],
|
| 292 |
+
get_emotion_category(emotion_label)
|
| 293 |
+
)
|
| 294 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 295 |
+
|
| 296 |
+
with col2:
|
| 297 |
+
# st.markdown('<div class="task-input">', unsafe_allow_html=True)
|
| 298 |
+
st.markdown('<h3>π
Add New Task</h3>', unsafe_allow_html=True)
|
| 299 |
+
with st.form("task_form", clear_on_submit=True):
|
| 300 |
+
task_description = st.text_input("Task Description", help="Be specific about what needs to be done")
|
| 301 |
col_date, col_time = st.columns(2)
|
| 302 |
|
| 303 |
with col_date:
|
| 304 |
+
due_date = st.date_input("Due Date")
|
| 305 |
|
| 306 |
with col_time:
|
| 307 |
+
due_time = st.time_input("Due Time")
|
| 308 |
+
|
| 309 |
+
complexity = st.slider(
|
| 310 |
+
"Task Complexity (1-10)",
|
| 311 |
+
1, 10, 5,
|
| 312 |
+
help="Higher complexity may affect task priority"
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
submitted = st.form_submit_button("β Add Task")
|
| 316 |
|
| 317 |
+
if submitted and task_description and due_date and due_time:
|
| 318 |
+
due_date_time = datetime.combine(due_date, due_time)
|
| 319 |
+
time_remaining = due_date_time - datetime.now()
|
| 320 |
+
predicted_intent_score = predict_intent(task_description)
|
| 321 |
+
|
| 322 |
+
task = {
|
| 323 |
+
"id": st.session_state.task_counter, # Add unique ID
|
| 324 |
+
"description": task_description,
|
| 325 |
+
"due_date_time": due_date_time,
|
| 326 |
+
"time_remaining": time_remaining,
|
| 327 |
+
"complexity": complexity,
|
| 328 |
+
"predicted_intent_score": predicted_intent_score,
|
| 329 |
+
"predicted_emotion": st.session_state.overall_emotion,
|
| 330 |
+
"predicted_label_name": st.session_state.overall_emotion_label,
|
| 331 |
+
"priority_score": calculate_priority_score(
|
| 332 |
+
predicted_intent_score,
|
| 333 |
+
st.session_state.overall_emotion,
|
| 334 |
+
st.session_state.overall_emotion_label,
|
| 335 |
+
time_remaining,
|
| 336 |
+
complexity,
|
| 337 |
+
get_emotion_category(st.session_state.overall_emotion_label)
|
| 338 |
+
),
|
| 339 |
+
"completed": False
|
| 340 |
+
}
|
| 341 |
|
| 342 |
+
st.session_state.tasks.append(task)
|
| 343 |
+
st.session_state.task_counter += 1 # Increment counter
|
| 344 |
+
st.success("β
Task Added Successfully!")
|
| 345 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
+
# Task List with Improved Visualization
|
| 348 |
+
if st.session_state.tasks:
|
| 349 |
+
st.markdown('<h3>π Task Priority List</h3>', unsafe_allow_html=True)
|
| 350 |
+
|
| 351 |
+
# Sort tasks by priority
|
| 352 |
+
sorted_tasks = sorted(st.session_state.tasks, key=lambda x: x["priority_score"], reverse=True)
|
| 353 |
+
|
| 354 |
+
# Create task overview cards
|
| 355 |
+
st.markdown('<div class="task-overview">', unsafe_allow_html=True)
|
| 356 |
+
col1, col2 = st.columns(2)
|
| 357 |
+
with col1:
|
| 358 |
+
st.markdown(f'<div class="metric-card"><div class="metric-value">{len(sorted_tasks)}</div><div class="metric-label">Total Tasks</div></div>', unsafe_allow_html=True)
|
| 359 |
+
# with col2:
|
| 360 |
+
# high_priority = len([t for t in sorted_tasks if t["priority_score"] > 0.7])
|
| 361 |
+
# st.markdown(f'<div class="metric-card"><div class="metric-value">{high_priority}</div><div class="metric-label">High Priority</div></div>', unsafe_allow_html=True)
|
| 362 |
+
with col2:
|
| 363 |
+
today = datetime.now()
|
| 364 |
+
due_today = len([t for t in sorted_tasks if t["due_date_time"].date() == today.date()])
|
| 365 |
+
st.markdown(f'<div class="metric-card"><div class="metric-value">{due_today}</div><div class="metric-label">Due Today</div></div>', unsafe_allow_html=True)
|
| 366 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 367 |
+
|
| 368 |
+
# Display tasks with priority-based styling
|
| 369 |
+
for idx, task in enumerate(sorted_tasks):
|
| 370 |
+
priority_class = "high-priority" if task["priority_score"] > 0.7 else "medium-priority"
|
| 371 |
+
|
| 372 |
+
# Create a single row for task and buttons
|
| 373 |
+
task_container = st.container()
|
| 374 |
+
with task_container:
|
| 375 |
+
cols = st.columns([0.8, 0.1, 0.1])
|
| 376 |
+
|
| 377 |
+
# Task content in first column
|
| 378 |
+
with cols[0]:
|
| 379 |
+
st.markdown(f"""
|
| 380 |
+
<div class="priority-task {priority_class}">
|
| 381 |
+
<div class="task-content">
|
| 382 |
+
<div class="task-header">
|
| 383 |
+
<span class="task-title">{task["description"]}</span>
|
| 384 |
+
<span class="priority-score">Priority: {task["priority_score"]:.2f}</span>
|
| 385 |
+
</div>
|
| 386 |
+
<div class="task-details">
|
| 387 |
+
<span class="task-stat">Due: {task["due_date_time"].strftime("%d %b, %I:%M %p")}</span>
|
| 388 |
+
<span class="task-stat">Complexity: {task["complexity"]}</span>
|
| 389 |
+
</div>
|
| 390 |
+
</div>
|
| 391 |
+
</div>
|
| 392 |
+
""", unsafe_allow_html=True)
|
| 393 |
+
st.session_state.editing_task_id = None
|
| 394 |
+
# Edit button
|
| 395 |
+
with cols[1]:
|
| 396 |
+
if st.button("βοΈ", key=f"edit_{idx}", help="Edit task"):
|
| 397 |
+
st.session_state.editing_task_id = idx
|
| 398 |
+
|
| 399 |
+
# Delete button
|
| 400 |
+
with cols[2]:
|
| 401 |
+
if st.button("ποΈ", key=f"delete_{idx}", help="Delete task"):
|
| 402 |
+
st.session_state.tasks.pop(idx)
|
| 403 |
+
st.success("Task deleted!")
|
| 404 |
+
st.rerun()
|
| 405 |
+
|
| 406 |
+
# Show edit form below the task if being edited
|
| 407 |
+
if st.session_state.editing_task_id == idx:
|
| 408 |
+
with st.form(key=f"edit_form_{idx}"):
|
| 409 |
+
col1, col2 = st.columns(2)
|
| 410 |
+
with col1:
|
| 411 |
+
new_description = st.text_input("Description", value=task["description"])
|
| 412 |
+
new_complexity = st.slider("Complexity", 1, 10, value=task["complexity"])
|
| 413 |
+
with col2:
|
| 414 |
+
new_due_date = st.date_input("Due Date", value=task["due_date_time"].date())
|
| 415 |
+
new_due_time = st.time_input("Due Time", value=task["due_date_time"].time())
|
| 416 |
+
|
| 417 |
+
col1, col2 = st.columns(2)
|
| 418 |
+
with col1:
|
| 419 |
+
if st.form_submit_button("πΎ Save"):
|
| 420 |
+
# Update task
|
| 421 |
+
task["description"] = new_description
|
| 422 |
+
task["due_date_time"] = datetime.combine(new_due_date, new_due_time)
|
| 423 |
+
task["time_remaining"] = task["due_date_time"] - datetime.now()
|
| 424 |
+
task["complexity"] = new_complexity
|
| 425 |
+
|
| 426 |
+
# Recalculate priority
|
| 427 |
+
task["priority_score"] = calculate_priority_score(
|
| 428 |
+
task["predicted_intent_score"],
|
| 429 |
+
task["predicted_emotion"],
|
| 430 |
+
task["predicted_label_name"],
|
| 431 |
+
task["time_remaining"],
|
| 432 |
+
task["complexity"],
|
| 433 |
+
get_emotion_category(task["predicted_label_name"])
|
| 434 |
+
)
|
| 435 |
+
st.session_state.editing_task_id = None
|
| 436 |
+
st.success("Task updated!")
|
| 437 |
+
st.rerun()
|
| 438 |
+
|
| 439 |
+
with col2:
|
| 440 |
+
if st.form_submit_button("β Cancel"):
|
| 441 |
+
st.session_state.editing_task_id = None
|
| 442 |
+
st.rerun()
|
| 443 |
+
|
| 444 |
+
# AI Plan Section
|
| 445 |
+
if st.session_state.tasks:
|
| 446 |
+
st.markdown('<div class="custom-card">', unsafe_allow_html=True)
|
| 447 |
+
st.markdown('<h3>β° AI Task Planning</h3>', unsafe_allow_html=True)
|
| 448 |
+
|
| 449 |
+
col_date, col_time = st.columns(2)
|
| 450 |
+
|
| 451 |
+
with col_date:
|
| 452 |
+
plan_date = st.date_input("Select Plan Date", datetime.now().date())
|
| 453 |
+
|
| 454 |
+
with col_time:
|
| 455 |
+
plan_time = st.time_input("Select Plan Start Time", datetime.now().time())
|
| 456 |
+
|
| 457 |
+
selected_datetime = datetime.combine(plan_date, plan_time)
|
| 458 |
+
|
| 459 |
+
if st.button("π
Generate AI Plan"):
|
| 460 |
+
suggestion = get_llama_suggestion(
|
| 461 |
+
st.session_state.overall_emotion_label,
|
| 462 |
+
st.session_state.tasks,
|
| 463 |
+
selected_datetime # Pass full datetime object
|
| 464 |
+
)
|
| 465 |
+
st.markdown(f'<div class="info-box">{suggestion}</div>', unsafe_allow_html=True)
|
| 466 |
+
st.markdown('</div>', unsafe_allow_html=True)
|