File size: 3,595 Bytes
65f2058
 
 
c78f490
b211ff8
 
 
 
 
 
 
65f2058
 
 
 
 
 
 
 
 
9cd4773
65f2058
9cd4773
65f2058
 
9cd4773
65f2058
 
9cd4773
65f2058
 
9cd4773
 
 
 
65f2058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2be56e
f26c377
9cd4773
65f2058
d0d10bb
b2c894f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af350b1
b2c894f
 
09d4b38
 
 
 
 
10b3037
af350b1
 
36412e3
af350b1
9cd4773
 
 
 
 
 
 
 
 
65f2058
 
9cd4773
 
 
 
65f2058
9cd4773
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
from PIL import Image
from inference.main import MultiModalPhi2
# from __future__ import annotations
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import time


messages = []

multimodal_phi2 = MultiModalPhi2(
    modelname_or_path="Navyabhat/Llava-Phi2",
    temperature=0.2,
    max_new_tokens=1024,
    device="cpu",
)

def add_content(chatbot, text, image, audio_upload, audio_mic) -> gr.Chatbot:
    textflag, imageflag, audioflag = False, False, False
    if text not in ["", None]:
        chatbot.append((text, None))
        textflag = True
    if image is not None:
        chatbot.append(((image,), None))
        imageflag = True
    if audio_mic is not None:
        chatbot.append(((audio_mic,), None))
        audioflag = True
    else:
        if audio_upload is not None:
            chatbot.append(((audio_upload,), None))
            audioflag = True
    if not any([textflag, imageflag, audioflag]):
        # Raise an error if neither text nor file is provided
        raise gr.Error("Enter a valid text, image or audio")
    return chatbot


def clear_data():
    return {prompt: None, image: None, audio_upload: None, audio_mic: None, chatbot: []}


def run(history, text, image, audio_upload, audio_mic):
    if text in [None, ""]:
        text = None

    if audio_upload is not None:
        audio = audio_upload
    elif audio_mic is not None:
        audio = audio_mic
    else:
        audio = None

    print("text", text)
    print("image", image)
    print("audio", audio)

    if image is not None:
        image = Image.open(image)
    outputs = multimodal_phi2(text, audio, image)
    # outputs = ""

    history.append((None, outputs.title()))
    return history, None, None, None, None
    
with gr.Blocks() as demo:
    gr.Markdown("## MulitModal Phi2 Model Pretraining and Finetuning from Scratch")

    with gr.Row():
        with gr.Column(scale=4):
            # Creating a column with a scale of 6
            with gr.Box():
                with gr.Row():
                    # Adding image
                    image = gr.Image(type="filepath", value=None)
                # Creating a column with a scale of 2
                with gr.Row():
                    # Add audio
                    audio_upload = gr.Audio(source="upload", type="filepath")
                    audio_mic = gr.Audio(
                        source="microphone", type="filepath", format="mp3"
                    )

        with gr.Column(scale=8):
            with gr.Box():
                with gr.Row():
                    chatbot = gr.Chatbot(
                        avatar_images=("🧑", "🤖"),
                        height=560,
                    )

        with gr.Row():
            # Adding a Textbox with a placeholder "write prompt"
            prompt = gr.Textbox(
                placeholder="Ask anything", lines=2, label="Query", value=None, scale = 4
            )

    with gr.Row():
        # Adding a Button
        submit = gr.Button(value = "Submit", variant="success")
        clear = gr.Button(value="Clear")

    submit.click(
        add_content,
        inputs=[chatbot, prompt, image, audio_upload, audio_mic],
        outputs=[chatbot],
    ).success(
        run,
        inputs=[chatbot, prompt, image, audio_upload, audio_mic],
        outputs=[chatbot, prompt, image, audio_upload, audio_mic],
    )

    clear.click(
        clear_data,
        outputs=[prompt, image, audio_upload, audio_mic, chatbot],
    )

demo.launch()