Spaces:
Sleeping
Sleeping
| import os | |
| import warnings | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| AutoConfig, | |
| BitsAndBytesConfig, | |
| CLIPImageProcessor, | |
| ) | |
| import torch | |
| from .language_model.llava_phi import LlavaPhiForCausalLM | |
| from .language_model.configuration_llava_phi import LlavaPhiConfig | |
| IGNORE_INDEX = -100 | |
| IMAGE_TOKEN_INDEX = -200 | |
| DEFAULT_IMAGE_TOKEN = "<image>" | |
| DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
| DEFAULT_IM_START_TOKEN = "<im_start>" | |
| DEFAULT_IM_END_TOKEN = "<im_end>" | |
| def load_pretrained_model( | |
| model_path, | |
| model_base, | |
| model_name, | |
| load_8bit=False, | |
| load_4bit=False, | |
| device_map="cuda", | |
| device="cuda", | |
| ): | |
| kwargs = {"device_map": device_map} | |
| if load_8bit: | |
| kwargs["load_in_8bit"] = True | |
| elif load_4bit: | |
| kwargs["load_in_4bit"] = True | |
| kwargs["quantization_config"] = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.float16, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type="nf4", | |
| ) | |
| # else: # TODO: after fine-tuning LLava-Phi, load the model weights with fp16 will pose nan | |
| # kwargs['torch_dtype'] = torch.float16 | |
| if "phi" in model_name.lower(): | |
| # Load LLaVA-Phi model | |
| if "lora" in model_name.lower() and model_base is None: | |
| warnings.warn( | |
| "There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument." | |
| ) | |
| if "lora" in model_name.lower() and model_base is not None: | |
| lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
| tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
| print("Loading LLaVA-Phi from base model...") | |
| model = LlavaPhiForCausalLM.from_pretrained( | |
| model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs | |
| ) | |
| token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features | |
| if model.lm_head.weight.shape[0] != token_num: | |
| model.lm_head.weight = torch.nn.Parameter( | |
| torch.empty( | |
| token_num, tokem_dim, device=model.device, dtype=model.dtype | |
| ) | |
| ) | |
| model.model.embed_tokens.weight = torch.nn.Parameter( | |
| torch.empty( | |
| token_num, tokem_dim, device=model.device, dtype=model.dtype | |
| ) | |
| ) | |
| print("Loading additional LLaVA-Phi weights...") | |
| if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): | |
| non_lora_trainables = torch.load( | |
| os.path.join(model_path, "non_lora_trainables.bin"), | |
| map_location="cpu", | |
| ) | |
| else: | |
| # this is probably from HF Hub | |
| from huggingface_hub import hf_hub_download | |
| def load_from_hf(repo_id, filename, subfolder=None): | |
| cache_file = hf_hub_download( | |
| repo_id=repo_id, filename=filename, subfolder=subfolder | |
| ) | |
| return torch.load(cache_file, map_location="cpu") | |
| non_lora_trainables = load_from_hf( | |
| model_path, "non_lora_trainables.bin" | |
| ) | |
| non_lora_trainables = { | |
| (k[11:] if k.startswith("base_model.") else k): v | |
| for k, v in non_lora_trainables.items() | |
| } | |
| if any(k.startswith("model.model.") for k in non_lora_trainables): | |
| non_lora_trainables = { | |
| (k[6:] if k.startswith("model.") else k): v | |
| for k, v in non_lora_trainables.items() | |
| } | |
| model.load_state_dict(non_lora_trainables, strict=False) | |
| from peft import PeftModel | |
| print("Loading LoRA weights...") | |
| model = PeftModel.from_pretrained(model, model_path) | |
| print("Merging LoRA weights...") | |
| model = model.merge_and_unload() | |
| print("Model is loaded...") | |
| elif model_base is not None: | |
| # this may be mm projector only | |
| print("Loading LLaVA-Phi from base model...") | |
| tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
| cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
| model = LlavaPhiForCausalLM.from_pretrained( | |
| model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs | |
| ) | |
| mm_projector_weights = torch.load( | |
| os.path.join(model_path, "mm_projector.bin"), map_location="cpu" | |
| ) | |
| mm_projector_weights = { | |
| k: v.to(torch.float16) for k, v in mm_projector_weights.items() | |
| } | |
| model.load_state_dict(mm_projector_weights, strict=False) | |
| else: | |
| print("load llaVA-Phi MLLM!!!") | |
| config = LlavaPhiConfig.from_pretrained(model_path, trust_remote_code=True) | |
| tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | |
| model = LlavaPhiForCausalLM.from_pretrained( | |
| model_path, config=config, use_safetensors=True, **kwargs | |
| ).to("cuda") | |
| else: | |
| # Load language model | |
| if model_base is not None: | |
| # PEFT model | |
| from peft import PeftModel | |
| tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_base, | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True, | |
| device_map="auto", | |
| ) | |
| print(f"Loading LoRA weights from {model_path}") | |
| model = PeftModel.from_pretrained(model, model_path) | |
| print(f"Merging weights") | |
| model = model.merge_and_unload() | |
| print("Convert to FP16...") | |
| model.to(torch.float16) | |
| else: | |
| tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_path, low_cpu_mem_usage=True, **kwargs | |
| ) | |
| image_processor = CLIPImageProcessor.from_pretrained(model_path) | |
| if "phi" in model_name.lower(): | |
| mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
| mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) | |
| # TODO: the tokenizer length of phi-2 is 50295, but the output class of lm_head is 51200 | |
| if mm_use_im_patch_token: | |
| tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
| if mm_use_im_start_end: | |
| tokenizer.add_tokens( | |
| [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True | |
| ) | |
| # model.resize_token_embeddings(len(tokenizer)) | |
| else: | |
| raise ValueError(f"Unsupported model name: {model_name}") | |
| if hasattr(model.config, "max_sequence_length"): | |
| context_len = model.config.max_sequence_length | |
| else: | |
| context_len = 2048 | |
| model.to(device="cuda") | |
| print(kwargs) | |
| return tokenizer, model, image_processor, context_len | |