Navyabhat's picture
Update app.py
687e399 verified
raw
history blame
4 kB
import gradio as gr
from PIL import Image
from inference.main import MultiModalPhi2
# from __future__ import annotations
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import time
messages = []
multimodal_phi2 = MultiModalPhi2(
modelname_or_path="Navyabhat/Llava-Phi2",
temperature=0.2,
max_new_tokens=1024,
device="cpu",
)
def add_content(chatbot, text, image, audio_upload, audio_mic) -> gr.Chatbot:
textflag, imageflag, audioflag = False, False, False
if text not in ["", None]:
chatbot.append((text, None))
textflag = True
if image is not None:
chatbot.append(((image,), None))
imageflag = True
if audio_mic is not None:
chatbot.append(((audio_mic,), None))
audioflag = True
else:
if audio_upload is not None:
chatbot.append(((audio_upload,), None))
audioflag = True
if not any([textflag, imageflag, audioflag]):
# Raise an error if neither text nor file is provided
raise gr.Error("Enter a valid text, image or audio")
return chatbot
def clear_data():
return {prompt: None, image: None, audio_upload: None, audio_mic: None, chatbot: []}
def run(history, text, image, audio_upload, audio_mic):
if text in [None, ""]:
text = None
if audio_upload is not None:
audio = audio_upload
elif audio_mic is not None:
audio = audio_mic
else:
audio = None
print("text", text)
print("image", image)
print("audio", audio)
if image is not None:
image = Image.open(image)
outputs = multimodal_phi2(text, audio, image)
# outputs = ""
history.append((None, outputs.title()))
return history, None, None, None, None
with gr.Blocks() as demo:
gr.Markdown("## MulitModal Phi2 Model Pretraining and Finetuning from Scratch")
# with gr.Row():
# with gr.Column(scale=4):
# # Creating a column with a scale of 6
# with gr.Box():
# with gr.Row():
# # Adding image
# image = gr.Image(type="filepath", value=None)
# # Creating a column with a scale of 2
# with gr.Row():
# # Add audio
# audio_upload = gr.Audio(source="upload", type="filepath")
# audio_mic = gr.Audio(
# source="microphone", type="filepath", format="mp3"
# )
# with gr.Column(scale=8):
with gr.Box():
with gr.Row():
chatbot = gr.Chatbot(
avatar_images=("πŸ§‘", "πŸ€–"),
height=560,
)
with gr.Row():
# Adding a Textbox with a placeholder "write prompt"
prompt = gr.Textbox(
placeholder="Ask anything", lines=2, label="Query", value=None, scale = 4
)
upload_btn = gr.UploadButton("πŸ“", file_types=["image", "audio"])
if upload_btn is not None and len(upload_btn) > 0:
file_path = upload_btn[0].name
image = gr.Image(file_path, type="filepath")
audio_upload = gr.Audio(file_path, source="upload", type="filepath")
audio_mic = gr.Audio(
source="microphone", type="filepath", format="mp3"
)
with gr.Row():
# Adding a Button
submit = gr.Button(value = "Submit", variant="success")
clear = gr.Button(value="Clear")
submit.click(
add_content,
inputs=[chatbot, prompt, image, audio_upload, audio_mic],
outputs=[chatbot],
).success(
run,
inputs=[chatbot, prompt, image, audio_upload, audio_mic],
outputs=[chatbot, prompt, image, audio_upload, audio_mic],
)
clear.click(
clear_data,
outputs=[prompt, image, audio_upload, audio_mic, chatbot],
)
demo.launch()